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FOREWORD

This report is, in a sense, an extension of the model presented in Report

I. Part A presents more detailed information about the activities in the model

which have to do with the aspects of system design that are directly related to

man. Part B relates selected terms within all the research reports to the

common vernacular of the biotechnology and system engineering community.

The two parts are presented as essentially separate reports and are referred

to as Report IIA and Report IIB throughout. The research was sponsored by

the National Aeronautics and Space Administration, Ames Research Center,

under Contract NAS 2-2955.

This effort was greatly enhanced through the interest and support of the

technical monitor, Mr. Charles Kubokawaof the Biotechnology Division at

Ames Research Center.
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I. OVERVIEW OF PART A

System Development Activities Concerned with Putting Man

in an Aerospace System: Activities Required for Obtaining

Optimal Human Performance in Systems

All aerospace systems include man performance. Although man may not

be included as an element of the flight segment, he is always employed in the

launch segment. Therefore, in developing an aerospace system, as in the

development of any system, care must be taken to put man into the system in

a way that can be defended as "good. '.' In the case of aerospace systems, how-

ever, the care which is taken has a "greater than usual" importance. In the

flight segment, man takes up precious weight, power, and volume and his in-

clusion there must be justified in terms of overall system quality as the best

use of that weight, power and volume. Further, the consequences of system

failure when the flight segment is manned may be the loss of human life, and

therefore human performance in both segments must be employed with care

to assure the safety of flight personnel.

It is clear that there is a need to ensure that man is designed into aero-

space systems in an optimal way. By this we mean that the system solution

selected must employ man in a way that yields a highly desirable operational

system in terms of overall quarry and cost as compared with other system
1

solutions within the state of the art. Thus we emphasize that an optimal

solution is one which is desirable as a _ it is not one which has been

suboptimized with respect to human performance or any other system part or

subsystem.

lIn this series of reports we will speak of an optimum solution rather than

the optimum solution. We do assume that there is at least one very best
solution among all possible solutions for any given system problem. Some-
times the word optimum is used to denote this solution. We, however, as-
sume that there are other solutions in the Cost, Quality neighborhood of the

best one which are also highly acceptable. We take the position that finding
any solution in this neighborhood will be satisfactory for the purpose of
solving the problem which gave rise to consideration of the system to be
developed. We will refer to any solution from this neighborhood as an opti-
mum solution.



While it is one thing to say that an optimal system solution is needed, it

is quite another thing to devise a development strategy that will produce one.

For one thing, such a strategy must take account of when man-related actions

are taken relative to the timing of other actions in the development cycle.

The timing strategy should be such that decisions are made neither: (1) so

late that prior related decisions force a poor one to be made, or (2) so early

that the decisions exclude subsequent desirable decisions. Thus, in order to

ensure that a development cycle will produce an optimal system solution, we

must at least have a strategy for making design decisions which do not pre-

clude the production of an optimal solution; preferably, we would choose one

that would promote an optimal solution. A development cycle strategy to

satisfy these requirements is presented in a companion report, Report IA,

A Simple Model of a Man-Machine System Development Cycle. Report IA

presents not only a symbolic version of a development cycle model, but it

also presents the rationale for the model in order to provide for confidence in

its use, and for its improvement by evolution.

While the model of Report IA places man-related development activities in

context and includes a strategy for the relative timing of man-related decisions

in development, it does not provide information needed for the design and con-

trol of each of the identified man-related activities. Report IA thus leaves a

significant gap.

This report, Report IIA, is presented in response to the need identified

above which is not satisfied by Report IA. It is intendedto meetthe need for an

aid to planning and controlling each activity in an aerospace system develop-

ment cycle which is related to the production of man-related end products

such as trained personnel, job aids, human-engineered interfaces and so on.

To achieve this objective, it presents detailed information about each man-

related activity in the development cycle not given in Report IA. The purpose

of each man-related activity is discussed in the context of the overall develop-

ment cycle objective; dependencies upon other activities are identified;

demands of other activities are identified; interactions among activities are

called out; and an overview of the process of conducting the activity is given.

The specific activities which are considered are identified in the overall model



of an aerospace system development cycle that is set forth in Report IA. (See
also chapter 3 of this report. )

The basic development cycle model which identifies the man-related and

development activities is not appropriate for the purpose of identifying who

will perform the activities, what equipments are needed, and what disciplines

and data must be brought to bear in each activity. In fact, the basic model

presented in Report IA is a "Go" model which does not take account of the

technical management required to preclude, to detect, and to correct errors

in the development cycle as it proceeds. Itis in the description of the activi-

ties in this report that these matters are considered. Thus, in describing

each activity, the "ideal" approach set forth in the model is reconsidered

from a practical standpoint of what must take place in the real world of sys-

tem development.

When we consider such things as the manning and equipage of the activi-

ties presented in the model, we find that the activities fallinto natural group-

ings. Thus, we find in the real world that several different activities might

be accomplished by essentially the same personnel using the same equipment.

Itis therefore convenient and natural to talk about these activities together,

as a group. To reflect this feature of the real world of system development,

the man-related activities identified in the model have been organized into

activity groups. _ activity group is presented as a chapter and includes a

prologue in addition to specific discussion of each of the activities in the

group. The prologue to each group discusses the requirement for the activity

group, the relationship of the group to that development cycle model, and the

resources needed to implement the activities in the group.

Each activity description and each activity group discussion has been

prepared in such a manner that it may be used without extensive referral to

the descriptions of other activities and activity groups. The redundancies

which result from this kind of approach make the report somewhat unsuitable

as one to be read from cover to cover. However, the main objective of the

report is to provide information useful in the planning and control of activities

related to putting man in an aerospace system, and it is anticipated that when

3



it is used for this purpose it will be used by persons primarily interested in a
single activity group, or even in a single activity. Such users would find the

report cumbersome if each activity group discussion were not designed so that
it may stand alone except for reference to the overall model and assumptions.
A symbolic version of the overall model is presented for easy reference in

chapter 3. The assumptions and conventions employed throughout the activity
group discussions are summarized in chapter 2.

Unless the reader is concerned with justifying the basic development
cycle model which was used as a basis for identifying the activities discussed
in this report, he may employ this report without referring to Report IA, A
Simple Model of a Man-Machine Development Cycle. If the user is specifically

interested in detail regarding those development cycle activities which relate

to determining the role of man in an aerospace system, or which relate to

identifying the functions to be allocated to man in an aerospace system, he

will find it useful to refer to Report III, An Approach for Developing the Opti-

mal Role of Man and Allocation of Functions in an Aerospace System. Report

III is intended for use by human factors and biotechnological personnel who

must carry out these kinds of activities within a specific aerospace system

development cycle. The report contains detailed information about the deci-

sion processes involved and also presents supporting data needed to carry out

the decision-making actions. Part B of this report, Development of

Man-Machine Systems: Some Concepts and Guidelines, is intended for use by

personnel who desire to understand the usage and implications of concepts

commonly employed in talking about man-machine system development. Part

B not only discusses common concepts and terms in the jargon, but also

relates them to the concepts and terms chosen for use in Reports I, II, and III

in this series.



II. BACKGROUND INFORMATION

To talk about the process of man-machine system development with

reasonable precision by means of the words in common usage requires
excessively frequent and tedious circumlocution. In Reports IA and IB, pre-
cise communication is signally important; therefore, a special vocabulary for

talking about the system development process is presented in these reports.
Many of the words in this vocabulary are also employed in this report simply
because the ideas presented in the other reports are carried over to this one.
Therefore, in this chapter we will present a discussion in which the key terms

in the special vocabulary are introduced in a context that is designed to pro-
mote useful understanding of the concepts to which they refer. The attempt
here is to minimize the discussion of these special words to the greatest ex-

tent consistent with the objective of obtaining a satisfactory understanding for
the purposes of using this report. Readers should see Report IA for a more
detailed exposition of the terms which are discussed in this chapter. Report
IB provides an even more precise definition of some of the terms such as

state, function, system, monitoring function, and partitioning, all of which
are key terms in the calculus that is presented within that report. For most

users of this report, the longer discussions in Reports IA and IB are not

necessary.

Following the discussion below which introduces the special vocabulary,
the symbolic portion of the development cycle model of Report IA is presented
along with a brief discussion of it. Again, most users of the report will not

find it necessary to refer to the lengthy presentation of the rationale underly-
ing the model that is presented in Report IA.

Conventions and Assumptions

A basic term that will be used with great frequency is the term STATE.
We will use the word state to refer to the symbolic statement which results

from carrying out an act of measurement at a point in time. Thus, whenever
a properly trained person makes a measurement of the real world using a
procedure which is defined and which can be used by any other properly



trained person, the result is a symbolic statement (for example, "two meters
which may be thought of as being in correspondence with some attribute of the
real world at the time of measurement. Properly, we express a state by

noting the time of measurement, the method of measurement employed, and
the results of carrying out the measurement. In practice, we ordinarily write
down only the results of the act of measurement leaving the reader to infer
the act of measurement and the time.

We use the concept of state to define the concept of FUNCTION. Roughly
speaking, a function is a pair of states in which the second state occurs later

in time than the first with a probability in the interval 0 < p < 1, given the

first state. The first state is called the INPUT STATE of the function, and

the second is called the OUTPUT STATE of the function. It should be noted

that the definition of function does not include any reference to a real world

MEANS by which the function is to be implemented. Thus, a function is a

symbolic expression in terms of input and output states and probabilities.

Being unbiased, it permits us to find as many means as possible by which the

function might be implemented. When we speak of a means that can be used

to implement a function, we refer to a real-world process or thing which can

be set in correspondence with the function such that when acts of measure-

ment are performed on the means, the input state of the function is obtained,

and the output state is obtained with the probability given in the function defi-

nition.

In the system calculus underlying these concepts (see Report IB), PARTI-

TIONING and ADDING are defined rigorously. It is useful to have a working

understanding of these concepts. In everyday work we will denote a function,

F, by arrangement of "boxes and arrows" as shown below.

a

Pb = q, given a



Again roughly speaking, an array of functions whose first input state and

whose terminal output state are the same as those in the function given above

is said to be a partitioning of that function. For example, the array of func-

tions shown below is a partitioning of the function given above.

a___m_n ____b
L
v

Pb = q" given a

When the COMPONENT FUNCTIONS G, H, and I in the array of functions

given above are added together, we obtain the original function, F. Adding

is thus the inverse of partitioning.

When the output state, b, of a function, F, is distributed to two other

functions, the OUTPUT STATE DISTRIBUTION is denoted in the following

manner :

a L

v

d L
v

Sometimes the input state to a function is compounded of two or more

states which are the outputs of separate preceding functions. The case in

which the input state of a function includes two simultaneous output states a

and b is denoted in the following manner by the AND symbol (_ :

c L Note:
v

The input to F
is a and b.
Neither a alone,
nor b alone is

an adequate in-
put state.

7



Thus far we have avoided the use of the word SYSTEM; instead we have

employed the word function. In these reports we reserve the word system
to refer to a special kind of function. We use the word system to refer to
that function in a given discourse which comprehends all of the other connected
functions in the discourse. The function which can be obtained by adding all
of the other connected functions in the discourse is thus called the system.

We also employ the word system to refer to any array of functions whose ini-
tial input state is the initial system input, and whose terminal output state is
the same as the system output state. Finally, we use the word system also
to refer to any collection of means which can be set in correspondence with
an array of functions which describes a complete system in the sense of a
symbolically defined system. From time to time we will speak about special
types of systems. Thus we will refer to FOLLOW-ON SYSTEMS and to ADJA-

CENT SYSTEMS. Let us consider the system A in the diagram below to be
the object of concern in a given discourse. Then the system B which receives
its output (or more properly which demands its output} will be called a follow-

on system. Systems C and D which are also directly related to it will be

called adjacent systems or, more specifically, adjacent input systems. When

we talk about the collection of means which implements system A, usually it

will be necessary to talk about other types of adjacent systems as well. Thus,

the systems in the environment of system A hardware which are affected by

its spurious outputs will also be called adjacent systems.

v

Usually when we talk about man-made systems, we are concerned with

the overall probability of success of the system. Usually a target with high

probability of system success cannot be achieved without the use of MONI-

TORING FUNCTIONS. Monitoring functions are functions which respond to



the absence of a desired output state. Such functions can be used to "turn

on" back-up functions, or corrective functions, so that the desired output

state can be returned to an in-tolerance condition. A monitoring function is

denotcd in a schematic system diagram by a large circle. In the diagram

below the function M is a monitoring function.

e

L
w

* e or f will occur, but not both. Either is an input state of G.

In the above diagram the sequence of functions M, F provides an output

state which may be employed by system G in lieu of the output state of func-

tion A. Because the monitoring function M responds only when the output

of function A is out of tolerance or absent, this sequence of functions acts to

restore an input state to function G in a manner which increases the proba-

bility that the output of function G will occur. The sequence of functions M,

F is called an ADDITIVE LOOP. Any sequence of functions which is initiated

by a monitoring function and which acts to increase system probability of suc-

cess is called an additive loop. Usually a system which must have a high over-

all probability of success incorporates many additive loops. The collection

of all additive loops is called an ADDITIVE SET. Some of the additive loops



in an additive set may be implemented by means of redundant hardware, some
may be implemented by means of corrective maintenance, some by preventive
maintenance.

An array of functions which is a system is called a PRIME SYSTEM if
the array contains no additive loops and if every function in the array is es-

sential to the achievement of the system output. At the heart of every system

there is a prime system whose probability of output is greater than zero.

In these reports, we are concerned with the process of aerospace system

development. A basic idea underlying the treatment of this process is that

the development process may be described as a system. When we treat the

development process in this way, the input state is called a PRIMITIVE NEED

STATEMENT. This statement, which initiates the process of development,

is any statement which calls attention to a problem or need in the real world

and which eventually leads to the design, development, and operation of a

system to solve the need or problem. The output of a DEVELOPMENT CYCLE

conceived as a system is an installed operational system that is capable of

satisfactorily solving the need which gave rise to its development. The need

to be satisfied is associated with a follow-on system to the system that is built.

The principal agency responsible for the follow-on system is called the CUS-

TOMER. The customer is not necessarily the person or agency who provides

the funds for building a system that is required to solve his problem. How-

ever, because the customer is responsible for the follow-on system, he places

demands upon the system to be built by identifying the input which he requires.

The input which is so identified is the desired output state of the system that

is to be built.

The output of a development cycle is called an OPERATIONAL SYSTEM.

Thus, a development cycle produces all of the means necessary for there to

be an operational system. It is the output of the operational system that is

the desired input to the follow-on system of the customer. The desired output

of the operational system is described by means of a QUALITY SCORE FOR-

MULA. This formula, which expresses the requirements of the customer,

tells how the output of the operational system should be measured and what

10



score should be obtained when it is measured. A Quality score formula thus
provides one basis for describing how the "goodness" of the operational sys-

tem should be measured. A Quality score formula measures the goodness
of a system without regard for the means by which the system is implemented.
Therefore, it does not take into account the ways in which a given system so-
lution affects other systems in its environment by spurious outputs and by the

inputs which it demands. In most cases, given a Quality score formula and
a TARGET QUALITY SCORE, it is possible to construct many different phys-
ical systems that will yield the desired quality score. Some of these physical
systems will have very undesirable side effects, however, and will have to be

rejected because of'these side effects. For example, a candidate physical

system may contribute toxic contamination to the air, to the ground, or to
the water, and thus be completely unacceptable. Other system solutions may
make undue demands upon adjacent systems which cannot be met. For exam-

ple, a system solution designed to achieve a given quality score according to
a given Quality score formula may demand input power that is simply not avail-
able. The scoring of a SYSTEMSOLUTION (that is, of a specific collection of

means for achieving a given quality score} must take into account the relation-
ship of the solution to its environment. This accounting is done according to
an "A" SCORE FORMULA which results in an "A" score for the system. "A"
score formulas are specific to system solutions; they do not apply generally
to all system solutions as do Quality score formulas. Both the "A" score of

a system and its quality score relate to what might be called the "goodness

of the system. "

Just as all system solutions may be compared on the basis of quality

scores, so may all system solutions be compared on the basis of COST. By

cost, we mean the totality of all of the resources necessary to design, devel-
I

op, fabricate and install, operate and maintain a physical system that will

satisfy a need of concern. However, if we are to compare alternative system

solutions in terms of cost, there must be a formula for computing cost, so

that cost will be computed in the same way for all systems to be compared.

Now it can be seen that any system solution has a cost, a quality score,

and an "A" score. It can also be seen that all system solutions for a given

11



1
problem can be compared on the basis of quality and cost in common terms.
Because all system solutions for a given problem can be measured according

to the same quality and cost formulas, all such system solutions occupy a
common COST, QUALITY SPACE. We may schematically denote such a Cost,

Quality space in the following manner.

:5

9 0TM

0______ / / contour

Quality

0 SB
Cost

In the above diagram, the contour lines (growth curves) are intended to

show that the density of system solutions is not the same throughout the Cost,

Quality space. There are more system solutions of low quality and high cost

than there are of high quality and low cost. The contour lines show how the

density falls off in the given Cost, Quality space. In general, it is the

1
We have already shown that the "A" score of the given system solution is

idiosyncratic, making it impossible to compare a number of different system
solutions on common grounds in terms of "A" scores.
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objective of the first phase of a system development cycle to make certain
that phases II and III (the design and fabrication phases} will be directed to-

ward acquiring a physical system_which is reasonably high in quality and
reasonably low in cost in comparison with the other solutions to be found in
the Cost, Quality space.

Two systems of the same cost and the same quality are not necessarily
equally suitable. One of the two systems may have a very bad effect upon its
environment as reflected in its "A" score, whereas the other system may have

no appreciably bad effects. To preclude the design and fabrication of a sys-
tem with inordinately bad effects upon the environment which could have been
avoided by the application of good engineering, it is common to place CON-
STRAINTS upon a design and development program. Constraints are state-

ments which place limitations upon the degree of freedom of the designers

for the purpose of ensuring that processes are not employed in the design

which will give the system an unacceptable "A" score.

To provide for control over the process of system design and fabrication,

and to ensure that all steps in design and fabrication are directed toward a

common goal, it is desirable to describe that goal in terms of the manner in

which measurement will be carried out to determine whether or not the goal

has been achieved. The document which sets forth the manner in which goal

achievement will be measured at the end of a development cycle, and which,

therefore, also tells how steps toward goal achievement will be evaluated,

is called a BASIC SYSTEM SPECIFICATION. A Basic System Specification

must set forth the Quality score formula, a target quality score, a costing

formula and upper limit of c_ost, an "A" score formula, and identification of

the conditions under which the physical system that is fabricated will be mea-

sured to determine its quality, cost, and "A" score.

Within the Quality score formula that is contained in the Basic System

Specification there will virtually always be provision for measuring SYSTEM

PROBABILITY OF SUCCESS (probability of output of the system that is de-

sired}. Probability of success is of signal importance in the case of aero-

space systems in view of the penalties of system failure: large dollar loss

13



and loss of human lives. We will speak of the requirement for probability of
success, and to achieve it we will select means which are RELIABLE. Thus,

reliability is an attribute of means by which probability of output or probabil-

ity of success goals are achieved. We will not talk about the reliability of men
in the system, but we will talk about the reliability with which component func-
tions in a system are performed by man. Thus, probability of output is al-
ways associated with functions, and reliability is always associated with means
that are in correspondence with specific functions; it is not useful to talk about
the general reliability of a general purpose means.

We have injected the term AEROSPACE and it is necessary to define it.
An aerospace system is an operational system with a LOCAL (flight) SEG-
MENT and a REMOTE (launch or base} SEGMENT. The remote and local

segments are physical packages which are configured so that the local seg-
ment can move through space relative to the remote segment. These seg-
ments operate together as a system defined by a single Quality score formula.
An aerospace system always includes a propulsion function, and when the lo-
cal segment (the flight segment} is manned, it always includes a PERSONNEL
SUPPORT SYSTEM. The remote segment is always manned.

Personnel support systems are important elements in any aerospace sys-
tem. The personnel support system in the flight segment is called a HUMAN
SUPPORT SYSTEM. It provides the conditions necessary to obtain reliable
human performance of functions assigned to man in the flight segment. The
human support system typically includes an environmental control system,
a life support system, and all of the facilities necessary to maintain living
conditions necessary to the mental and physical health of the personnel aboard
the flight segment. At the remote base segment, a personnel support system
is referred to as a SAFETY AND SUPPORT SYSTEM. This system is con-
cerned not only with providing for the health and safety and working conditions

necessary for operator and maintenance technician performance, but it is
als0 concerned with providing for a good "A" score when the "A" score for-
mula demands attention to the effects of the system upon humans in its en-
vironment.
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The concept of a personnel support system is that it must provide the •

environment necessary to realize the reliability of means. When we take into

account what a means will be called upon to do and how reliably it will do

that, we may speak of the PERFORMANCE CAPABILITY of the means. The

performance capability of a means must always match the demands placed

upon it by the definition of the function which it implements.

The model of an aerospace system development cycle that is presented

in the next section is a "GO" MODEL. It is a functional design of a prime

development cycle (development system). The model does not take into ac-

count what must be done to ensure that the development process will be car-

ried out on time, within resources, and with high probability of success. All

of these factors, however, are important in the measure of goodness of a de-

velopment cycle itself. Wecall the measure of goodness of a development

cycle DEVELOPMENT QUALITY (Dev. Q). It is analogous to the measure of

goodness of the operational system in terms of quality. The quality of the

system that is produced is itselfan element in Dev. Q. To provide for a high

Dev. Q, it is necessary to elaborate the "Go" model by the addition of MAN-

AGEMENT FUNCTIONS. Some management functions must be added to pro-

vide for high probability that the development cycle will produce a high quality

system. These management functions Will be referred to as TECHNICAL

MANAGEMENT FUNCTIONS. Other management functions must be added to

ensure that the development cycle itselfwill be Prosecuted on time and within

the money available. Management functions of this type are referred to as

GENERAL MANAGEMENT.

The end product of a development cycle which is properly managed is an

operational system of the desired quality and cost. In the case of all aero-

space systems, this end product will include what is called a PERSONNEL

PRODUCTS PACKAGE. That is, it will include means which fall into one

of the following five categories:

1. Selected and trained crew members;

2. Job aids;

3. Materials to maintain reliability of crew performance on the job;
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4. Products of human engineering including interface devices, tools,
and work space arrangements;

5. Personnel support systems (Human Support System and Safety and
Support System}.

Taken together, we will refer to all of these end products as a personnel

products package. At the heart of the package will be selected and trained
crew members who are capable of maintenance technician performance and
operator performance as called out and allocated to them in the design of the

system. The other categories of end products are required only because
man is required, and they are thus secondary to the decision to include man
to carry out essential system functions. Those functions which are assigned

to man and which are prime system functions are referred to as operator
functions and they are implemented by means of OPERATOR PERFORMANCE.
Other functions which are components of additive loops are called maintenance

technician functions and they are implemented by means of MAINTENANCE
TECHNICIAN PERFORMANCE. The term "operator" is not used inasmuch
as it implies a crew member who is assigned only operator performance.
This option is seldom justifiable in the design of any aerospace system.

An Overview of the Development Cycle Model

The symbolic representation of the development cycle model presented
in Report I is presented in this report in Figures 1 through 9. Figure 1 pre-
sents an INDEX MODEL which is a simplified representation of the complete
model in terms of eight sequential functions. Each of the following figures
(Figures 2 through 9} presents a partitioning of one of the functions in the
index model. The component functions in each of these more detailed figures
are referred to in the text as ACTIVITIES. Examination of Figures 2 through

9 will show that the major detail in these figures is focused upon activities
concerned with the design and fabrication of personnel products. These fig-
ures are useful mainly for the purpose of showing the relationship among
activities in the development process. The output states of each activity will

be discussed in more detail in the chapters which follow; relatively little out-
put information is shown in the figures to avoid complication of the diagrams.
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To Activity X

FromActivity X

And symbol

Activities concerned with dividing a system
description to the segment level and with the
integration of segments into a complete system.

Activities concerned with dividing a segment
into packages and with the integration of
packages into segments (remote or local).

Activities concerned with dividing packages
into first-order component packages and with
integrating these into packages.

Activities concerned with dividing first-order
component packages into second-order com-
ponent packages and with integrating these.

Activities concerned with second-order

component packages.

Hardware activities, not detailed.

Quality

Cost

Dev. q

IIAII

B.S.S.

H. S.S.

S. S.S.

Development Quality

Adjacent System

Basic System Specification

Human Support System

Safety and Support System

Legend for Diagram Symbols and Notations
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Functions A, B, and C in the index model are discussed in Chapter III.

It will be useful here to discuss briefly Functions D through H in overview.

Functions D, E, F, and G taken together will sometimes be referred to as

PHASE II, and Function H will sometimes be referred to as PHASE III. Func-

tions A, B, and C constitute PHASE I. Phase II is initiated by a Basic Sys-

tem Specification; it is terminated with the presentation of a complete set of

fabrication models m that is, a complete set of all of the engineering draw-

trigs, wiring diagrams, assembly instructions, and so forth, necessary to

enable fabrication of the physical system. The output of Phase II is the input

to Phase llI which is concerned with fabrication. The output of Phase III

(Function H) is the output of the complete development cycle; a fabricated,

installed, and demonstrated operational system.

The rationale underlying the use of the Basic System Specification is

employed over and over again in the partitioning of Functions D, E, F, G,

and H and it will therefore be useful to consider that rationale. Fundamen-

tally, the Basic System Specification is a test specification. It describes a

complete and objective test by which the operational system as a whole may

be evaluated, and it identifies what is meant by a "passing grade. " When the

Basic System Specification is conceived in this way, then we might represent

Functions D through H as a single function, S, as shown in the sketch below.

Basic System

Specification

Complete installed operational

r

system and supporting data which
demonstrate that the Basic System

Specification is satisfied.

In the diagram above, the function that is obtained by adding Phases II

and III is bounded on the input side by a test specification and on the output

side by an end product and data which demonstrate that the delivered end
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product has passed the "test. " It is this pattern which is the characteristic

pattern that will be employed over and over again in the full development cycle

model -- a pattern of specifying or "ordering" a piece of work by means of

identifying the test which it must pass and then of bounding the output by a

delivered end product plus data which show that it has passed its test.

In order that every design and fabrication activity at every level of detail

in the model may be directed toward a specific and justifiable goal, the prin-

ciple of specification by means of disclosing the test of the end product is

employed throughout. To ensure that the tests are relevant, provision is

made for all test specifications to be derived in an orderly manner from the

overall system Quality score formula. No arbitrary tests which cannot be
1

shown to be predictive of effects upon Quality have been introduced. Pro-

vision for ensuring that all tests are related to Q is made by deriving all

tests of system parts and subparts in an orderly progression from the over-

all system Quality score formula.

In order to exemplify the manner in which component Functions D, E,

F, G, and H are partitioned in the full model, we will temporarily ignore the

fact that Phases II and III are partitioned into these five functions and treat

Phases II and III as a single function as symbolized in the schematic repre-

sentation of Function S above. The partitioning of this function that we will

develop will be typical of the partitioning of Functions D, E, F, G, and H in

the full model.

The pattern in which Function S is partitioned is determined by the fact

that aerospace system fabrication efforts are organized about physical pack-

ages. Fabrication efforts are not organized such that each subeffort cor-

responds to a specific system function, nor are fabrication efforts organized

about specific technologies such as pneumatics, hydraulics, mechanics, and

1
The model does not identify specifically all ways in which the "A" score

formula must be taken into account in the development process. All tests for
quality within Functions D through H must include consideration of the "A"
score formula for the system under development in the same manner as the
Quality score formula is considered.
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so on. They are, rather, organized to correspond to the major pieces and

major subpieces of-things that are to be delivered, assembled and installed

to make up the total operational system that is wanted. Whether this method

of organizing a fabrication effort is good or bad is not at issue here. It is a

fact that we organize major system fabrication efforts in this manner and that

this method of organization has passed the test of practice well enough to have

survived.

On the basis of practice,then, we first partition Function S into four com-

ponent activities as shown in the following diagram.

Basic

System

Specifi-
cation

Fabricated remote segment
and supporting data to
demonstrate that it passed
its test.

Specification of test of

the remote segment

derived from the B. S. S.
Complete
installed

Specification of test of

the local segment derived
from the B. S. S.

Fabricated

/ I local segment

and su ortin

data to _demon-
strate that it
passed its test.

system and

supporting data
which demon-

strate that the Basic

System Specification
is satisfied.
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In the diagram, Box S-IA and Box S-4A are at the "system" level. Boxes
S-2A and S-3A are at the "segment" level, the remote and local segments

being the first-order breakout of an aerospace system in terms of packages.
Even at this first level of partitioning, the essential nature of the array that
will be developed is revealed. The input to Box S-IA is the Basic System
Specification. As an "order" for system design and fabrication, it is essen-
tially a statement of how the output of Function S will be tested when it is

delivered. The output of Box S-4A is the output of Function S. It includes

the delivered, installed operational system and data to demonstrate that it

passes the test implied by the input to S- IA. The test may be applied again

by the customer, but presumably any testing the customer might do would de-

velop data essentially the same as the data presented as supporting data in

the output of Function S-4A.

In the partitioning of Function S, this test-product-plus-data pattern is

preserved at the segment level. Thus, the input to Function S-2A, for ex-

ample, is a description of the test of the remote segment which the output of

the activity must pass, and the output is the delivered end product (the re-

mote segment) plus data which show that its test has been passed. The pat-

tern is repeated again for the local segment in Function S-3A. Function S-4A

is then one which assembles and tests the remote and local segments as a

complete operational system.

The pattern of specifying a test and applying the test to develop supporting

data is repeated at all levels in the further partitioning of Function S. At the

next level of partitioning, we call out the major packages within segments

which are manufactured as packages. For example, typical packages within

the local segment are structures, prepulsion, guidance and control, and pay-

load. Examples in the remote segment might be propellant handling and

launch platform. In the model we are presenting here, we are not concerned

primarily with the specific breakout of hardware packages, however; we are

interested in typifying the hardware breakout in order to establish the level

of breakout at which the personnel products package will appear in parallel.

In our model we have placed the personnel products package in parallel with

hardware package breakouts at the level implied above. Therefore, the next

level of partitioning of Function S appears in the following diagram.
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In the array of activities shown, activities S-2B and S-3B develop descrip-

tions of the tests by which the packages at the next level of breakdown will be

evaluated. These tests are derived from the next higher level tests and be-

come the "orders" for fabrication at the next lower level; thus they provide

the basis for developing the supporting data which accompany each of the out-

puts at the next lower level.

It can be seen that the personnel products package appears at the second

level of breakdown. It can also be seen that a "clam-shell" type of pattern is

emerging in which activities concerned at the system level run down the mid-

dle with segment-oriented activities on either side. This clam-shell pattern

will be maintained with activities concerned with the remote segment on top

and activities concerned with the local segment on the bottom. The boxes are

coded to imply the level of breakout as follows:

Activities concerned with dividing a system

description to the segment level and with the

integration of segments into a complete system.

S-I

v

Activities concerned with dividing a segment into
packages and with the integration of packages into
segments ' ..... _ i__i__i't2illuLe or ±u_c_±/.

Activities concerned with dividing packages into

first-order component packages and with integrating
these into packages.

Activities concerned with dividing first-order
component packages into second-order component

packages and with integrating these.

Activities concerned with second-order component
packages.
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In presenting the model, the detail about hardware packages is not of use

and therefore the detail will be reduced to a simple reminder, as shown in

the following figure, which should be compared with the partitioning of Func-

tion S, shown above,

Fabricated propellant handling

equipment and supportln g data

l+aunch

Fabricated launch platform

facility

l'est spt,cs, for

l_,cal seMnlent

and.supp_,rting data

Complete personnel products

package and supportLng data

Fabricated structures

and supportin_ data I-]

Fabricated propulsion system<'

Pro _and support/ng data

(;uidan, ,, ["abricated guidance arid _Olltrol

alld colitr system + and supporting data I_

_ Fabricated pay oa

]'a_load and supportin_ data

Ptq.s(nln_+l I,'abtdeated personnt.l products

I In I pa kag and supp ittnj4 data

more prt)pt, rly "p,Jtkag_," than ,+xst_,m
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The form of the model for Function S, shown above, is the same as the
form of the model for Functions D, E, F, and G. By comparing it with the

previous partitioning of S, the reader will become familiar with the short-
hand conventions employed to reduce unnecessary detail in the symbolic
models.

As one moves from Function D to Function H in the full model the iden-

tification of the states changes; it is the overall pattern that remains the same.
In the complete breakout of activities for each of these functions, the person-

nel products package activity is further broken down, sometimes to one lower
level of detail, sometimes to two lower levels of detail.

33





III. ACTIVITY RELATIONSHIP TO PERSONNEL

PRODUCTS IN PHASE I OF DEVELOPMENT

The first three functions in the index model stand apart. These functions

must be carried out without the benefit of a measure of goodness; they are

themselves focused upon developing a measure of goodness which can be em-

ployed to monitor and control the development functions concerned with design

and fabrication (Phases II and III). Thus, the objective of Functions A, B, and

C is to produce a Basic System Specification which can then be used to guide

the principal development cycle effort in Functions D through H. Not only are

Functions A, B, and C unique because they must proceed without a measure of

goodness; they are also unique in that typically they must be accomplished on a

small budget. The budget for these functions will be small relative to the total

development cycle budget simply because there is always the hazard that the

outcome of Functions A, B, and C will be a recommendation not to proceed

with system design and fabrication. Should this be the outcome, it would in

most cases be quite unsatisfactory to find that major resources had been ex-

pended in the process of finding out that no system should be built.

In this chapter, we will consider the personnel products-related activities

in Functions A, B, and C of the index model. (See also Report III.) None of

the activities in the model is a pure personnel products-related activity; some

Of the activities involve almost no human factors or biotechnological participa-

tion. To partition these functions at a greater level of detail than that pre-

sented in the full model would not be likely to call out pure personnel-products

activities unless a level of very fine detail were achieved. This is so because

during this phase of a development cycle there must be a great deal of inter-

action among all of the areas of specialization involved. Task groups will be

small because of the limited funds, and guidance for setting up highly special-

ized task _roups will not be available because of the lack of criteria for

establishing a highly structured process.

In view of the unique nature of the personnel products involvement in

Functions A, B, and C, the component activities of these functions will be dis-

cussed here in running narrative form for the purpose of revealing the essential
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nature of the manner in which human factors and biotechnological skills will

typically be employed. In reading what follows, it should be kept in mind that

ordinarily it will not be known during this phase of the development process
what role man will have in the operational system that will be developed. In

fact, a major objective of this phase can be said to be the development of data
that will provide a basis for determining whether or not man will have a role
and to describe roughly what that role will be, if there is to be one.

We begin by considering Function A, which is composed of three compo-
nent activities in the model. These activities are focused upon achieving cost
and Quality score formulas for the system to be built. The development of a

cost formula normally does not require human factors involvement. The devel-
opment of the Quality score formula requires an investigation of the follow-on
system rather than consideration of the operational system that is to be built.
The preparation of the Quality score formula is therefore unlikely to require
consideration of man in the system, for consideration of any system means
should be excluded if possible. Human factors skills may be required if the

follow-on system involves man performance, but any concern with such per-
formance is not directed toward the development of personnel products as part

of the operational system to be built. In sum, we can say that none of the com-
ponent activities of Function A require personnel products-related activity in
the strict sense in which we employ the concept of personnel products in these

reports.

Function B in the index model can conveniently be considered in terms of

two groups of component activities; the first group contains activity B-I alone,

the second group contains activities B-2, B-3, and B-4. Activity B-I must
produce all of the candidate system solutions and partial solutions that are to
be considered in the course of the development cycle. For any aerospace sys-
tem, it will be desirable (necessary) that candidate solutions be offered which

must be implemented in part by human performance. The listing of qandidate
approaches involving human performance is clearly a personnel product-related

activity. On the other hand, there is no reason to expect that such candidate
solutions will be offered solely by human factors and biotechnology experts.
What is required, is that the list of solutions offered include identification of
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functions and means relative to man in the system so there will be a good basis
for testing to see whether or not man performance should be employed. An
excellent basis for identifying likely solutions is the functional and means de-
signs of similar systems already in operation or in later stages of development.
It appears that activity B-I can best be implemented by a group of experts in

differing fields of engineering specialization who have broad familiarity with
the state of the arts that are likely to be germane to the system problem they
are studying.

Whereas activity B-I must produce an extensive list of system candidates,
and can in a sense be evaluated by counting the number of candidate solutions
produced, activities B-2, B-3, and B-4 are concerned with getting rid of bad
candidates, and may crudely be evaluated in terms of the number of bad solu-

tions which they reject. Hypothesizing that certain candidate solutions relating
to man in the system will be bad from the standpoint of_cost or quality, or
probability of success of development is clearly a personnel products-related
activity. So is the process of demonstrating that the hypothesized bad solutions
are indeed bad. Therefore, this group of activities clearly involves personnel
products-related tasks. Yet, the specific work to be carried out cannot be pre-

dicted, for the successful conduct of these activities demands more of engineer-
ing ingenuity than it does of stylized procedure. It can reasonably be conjectured
that human factors and biotechnological skills will be required to spot bad solu-
tions .__ianu to dernonstrate*_'_+ ÷_, are _d bad, but even the hypothesizing

and testing probably could not be carried out successfully by a personnel products

group in isolation. The development of hypotheses and procedures for testing

will normally require the constant interaction of hardware engineering and man-

related specialists to obtain an understanding of the criteria by which candidate

solutions may be evaluated.

Function C in the index model ispartitioned into ten component activities

in the full model. Most of these involve personnel products-related tasks but

none is strictly personnel products-oriented. Several of the activities demand

the capability to estimate quality and cost consequences of choosing specified

system solutions involving personnel products.
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The objective of activity C-I is to identify the most promising solution
families among those candidate solutions which survive the filtering by activities
B-2, B-3, and B-4. One way to approach this activity would be to generate
alternate prime functional system designs and to employ these designs as the

top-level family identifiers. Each prime system functional design would then
be considered for the purpose of identifying all of the alternative means by
which functions might be implemented. It would be desirable to identify all of
those functions which could be allocated to man so that the effects of such allo-

cations might be estimated. This would provide a basis for giving man-related
solutions full opportunity to be represented. To achieve the objective of the
activity, it would be necessary to estimate the effects of alternative man solu-
tions upon total system quality and cost. Such estimates would have to take into
account the limits of man capability and the secondary effects on quality and

cost of including man in a system, such as the effects due to personnel support
systems. It would also be necessary to predict rough "A" score formulas for
systems involving man in order that unusually good or unusually bad "A" scores
might be found. Thus, for example, a system which precluded the recovery of
flight personnel in the case of certain system failures would probably be iden-
tified as one with an unusually bad "A" score. Costing estimates undertaken in
this activity need be only so precise as to permit the ordering of system solu-
tions with high confidence. What is desired is that it be possible to identify a
subset of "likely-to-be-good"system solutions on the basis of gross estimation

so that these may be examined later in more detail for the purpose of obtaining
a reliable ordering of them. This second ordering of the best solution families
is provided for by activities C-2, C-3, and C-4.

Activity C-2 is focused upon developing an approximate "A" score formula

for each solution family identified in the output of activity C-I. The "A" score
formula is to be used in activity C-4 as a basis for selecting the top solution
families from the total list. Personnel prozlucts-related tasks must be carried

out within activity C-2, when man in the system relates to an adjacent system
and when the system affects man in its environment. Thus, for example, when
the adjacent "system" of ethics demands that the lives of flight personnel be

protected, there is a relationship between man in the system and an adjacent
system that requires consideration in the "A" score formula. For a second
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example, when the system means under consideration releases toxic materials

into the environment, there is a relationship which must also be reflected in
the "A" score formula. Inthe caseofboth examples, personnel products would
be demanded as elements of any system that might be built to provide for an
accepLable "A" score. _,_,_ is no _,-_,_*-,_h,_n¢_T_p_'_c'_dNrefor develooing an
"A" score formula. Examination of similar existing systems will often reveal
important adjacent system relationships to be taken into account, however. It

can be seen that personnel products-related tasks in this activity must be inter-
woven with hardware-related activities as in the case of other activities in this

first phase of system development.

Activity C-3 calls for improved estimates of cost, quality, and Dev. Q
characteristics of each solution family identified in the output of activity C-I.
Inasmuch as every solution family will involve some personnel products, it
will be necessary to determine the contribution of man-performance solutions
to overall system cost and quality. In the case of each system, it will be neces-
sary to estimate the range within which crew size might fall, and to provide
parametric data with respect to the weight, power, and volume effects of crews

of varying sizes.

The data provided by activities C-2 and C-3 provide the basis in activity
C-4 for identifying a few top solution families. These will be the families with
L._ uv_ cost, .... _'*-- _**_,,+== a= f_li_ 14_m_nf_ctors and biotechnologi-

cal personnel may be desirable members of the team which selects the top
solution families, but there is nothing that is inherently personnel product-
oriented in the process of making the selections.

Activities C-5 and C-6 form a question-and-answer pair. In activity C-5,
each top solution family is considered for the purpose of developing questions
(or hypotheses) about the characteristics of family members in terms of cost
and quality, given various subfamily approaches to implementation. Activity

C-5 thus sets the stage for extensive system analyses in activity C-6. Clearly,
in activity C-5, it will be necessary to formulate questions about alternative
man-performance solutions within each solution family. However, such ques-
tions will not be independent of other system attributes to be investigated, and
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therefore the called-for man-related investigations cannot be formulated inde-

pendently. What is desired is that the set of questions formulated be so com-

prehensive that they will generate the data necessary to identify an acceptable
system solution within each of the solution families considered. If questions
about solutions involving personnel products are not raised at this time, most
likely it will be difficult to introduce such solutions later in the development

process.

Activity C-6 is essentially a system analytic effort. It is focused upon
obtaining answers to the questions posed in activity C-5. Inasmuch as many of
the questions will require that the cost and quality effects of personnel products
solutions be investigated, activity C-6 must involve extensive personnel prod-
ucts study. The study that is required will focus upon determining limits of

personnel product solutions, and upon determining quantitatively how various
personnel product solutions will directly and indirectly affect overall system
quality and cost. To enable trade-offs to be made, the data will ordinarily be
generated in parametric form, considering crew sizes over possible ranges,
for example.

As in the case of activity C-4, activity C-7 does not require constructive
personnel products efforts. Activity C-7 is directed toward the identification
of a typical acceptable system solution from within each solution family con-
sidered in activities C-5 and C-6. The basis for selection is provided in the
data output of activity C-6. It is not the purpose of activity C-7 to identify a
system solution that will be employed in the design and fabrication phases that
are to follow. Rather, the typical system solutions identified in activity C-7

provide a basis for obtaining the detailed information necessary to develop a
Basic System Specification as an output of Function C.

For each system solution identified in activity C-7, a typical development
cycle plan is prepared in activity C-8. The purpose in preparing the develop-
ment cycle plan is to provide one of the bases necessary to enable a good
estimate of cost to be made for each system solution. The personnel products
involvement in this activity is not in doubt. One important guideline for pre-
paring the needed development cycle plan is the development cycle model
presented in Report I and the information contained in this report. The
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personnel product-related involvement will therefore be concerned with identi-
fying the personnel product-related activities that must be carried out within

each development cycle. It will be necessary fob this aspect of development
cycle planning to be carried out in close concert with hardware planning, and,
for this reason, human factors and biotechnoiogical involvement should not be
called out as an entirely separate activity.

In activity C-9, refined cost, quality, and Dev. Q estimates must be pro-
vided for each typical system solution considered in activity C-8. Again, the
cost and quality effects of proposed personnel product solutions must be esti-

mated, requiring the participation of human factors and biotechnological
specialists. But here the objective is not to determine the optimal use of
personnel products. Rather, it is to establish a basis in terms of cost and

quality for the preparation of a specification of the system to be designed in
Function D.

Data will be provided in the output of activity C-9 for each top solution
studied in the sequence of activities C-5 through C-9. These data will provide
a basis for preparing a recommendation to the customer for proceeding (or not
proceeding) with design and fabrication of a physical system. If the customer's
concurrence is obtained in activity C-10, then a Basic System Specification
must be prepared incorporating quality, cost, "A" score, and Dev. Q informa-

tion about the system that is desired. Consideration of personnel pro d_ets will

enter into the preparation ot this Basic System Specification only if there are

constraints to be placed upon the system to be designed which affect personnel

product s.
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IV. DETERMINATION OF PRIME SYSTEM FUNCTIONS TO

BE PERFORMED BY MAN (OPERATOR PERFORMANCE)

Activity Group Requirements

and General Considerations

The strategy underlying the development cycle model dictates that Func-

tion D focus upon the identification of a functional design for the prime system;

thus the output of Function D is a stabilized functional design. Stabilization

implies that the prime system design will not be changed as the development

cycle proceeds through the rest of the design effort and through fabrication.

To have confidence at the completion of Function D that it will be possible to

complete design and fabrication according to the stabilized functional design

of the prime system, there must be data to show that there is at least one

satisfactory system solution which can be implemented. This means that with-

in Function D there must be a thorough investigation of the manner in which the

remainder of the development cycle can be carried out for each alternative

functional design that is seriously considered.

A functional design does not indicate a means by which the functions will

be implemented. Therefore, in a pure functional design there will be no indi-

cation of which functions may be implemented by human performance. How-

ever, to demonstrate that the recommended functional design is feasible to

implement, there must be presented in the accompanying supporting data pack-

age a thorough study of the functions which might be implemented by human

performance with indication of those which should be carried out by man.

Even in the case of a system which ultimately will be unmanned, such data will

be necessary to provide for confidence in the decision to stabilize a specific

prime functional design.

In the case of the remote segment, it will be sufficient, for the purposes

of prosecuting an effective development cycle, for the output of Function D to

provide only supporting data with respect to the possible role of man in a sys-

tem which might be developed on the basis of the recommended prime function-

al design. In the case of the local segment, such data will not be sufficient;

a recommended crew size must also be given. The underlying rationale is as
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follows. Function E, which follows immediately, calls for the identification

of prime system means; in the local segment it will therefore be necessary in

Function E to identify the propulsion means to be employed in the operational

system. To identify propulsion means, the size of the crew for the local seg-

ment must be known if an optimal system is to be developed, for generally

there will be an increasing relation between crew size and the capability re-

quired of the propulsion package. Optimization of system quality and cost is

at stake because of the potential significant effect of human performance both

upon quality and upon cost, and, of course, as performance demands increase,

so must the size of the crew. Therefore, to be prepared for the propulsion

means decision in Function E, it is necessary for the output of Function D to

include a decision with respect to the size of the crew for the local segment.

Because of the need for determining crew size as a basis for initiating

Function E, the personnel products-related activity in Function D that is con-

cerned with local segment design (activity D-7) must include determination of

which functions in the prime system design will be allocated for implementa-

tion by crew members in the local segment. This amounts to a means alloca-

tion to prime functions ahead of schedule, for it is in Function E that such

means allocations are called for. With this exception, however, the personnel

products-related activities in Function D will be carried out in concert with

parallel hardware-related activities for the purpose of achieving a joint deter-

mination of a recommended prime functional design. The requirement for the

prime functional design to be stabilized first is bound up in the overall strategy

of the development cycle. That strategy holds that functional design must pre-

cede means design, and that prime system design must precede design of the

additive set.
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Relationship of the Group

to the Development Cycle Model

This activity group includes two activities in the model, activity D-4 and

activity D-7. The output of activity D-4 identifies the operator performance

allocations to be made in the remote segment for each of several possible

crew sizes. These data are provided to support the overall objective of Func-

tion D, which is to identify and stabilize a functional design of the prime sys-

tem. Activity D-7 performs an analogous role with respect to the local segment.

The output of activity D-7, however, also includes identification of a

recommended crew size for the local segment. In general, activities D-4 and

D-7 differ also in that design considerations for the local segment are limited

by weight, power, and volume budgets, whereas design for the remote segment

is not. Activities D-4 and D-7 are carried out in parallel with a number of

similar activities concerned with developing the relationship of the prime func-

tional design to the hardware packages in the system. Inasmuch as the objec-

tive is to produce one prime functional design, constant cooperation and inter-

action between remote and local design efforts, and between man-oriented and

hardware-oriented efforts is required throughout Function D. Thus, although

D-4 and D-7 are shown in the model in simple parallel with each other and

with hardware activities, there must be in fact a constant flow of information

among all of the parallel activities.

If we assume that the personnel employed in the prosecution df Functions

A, B, and C are not the same as those who initiate and carry out Phases II and

IIIof the development cycle, then activities D-4 and D-7 have no important

antecedents. The nature of the work that is carried out in these activities is

similar to the humar_ factors efforts required in Function C, but in Function D

the design effort is guided and bounded by a Basic System Specification, which

provides a criterion against which to judge the outputs produced.

Although D-4 and D-7 may have no antecedent, virtually every personnel

product-related activity in the development cycle is in some sense a descendant

of D-4 or of D-7. To provide the data necessary for confidence in the selection
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of a prime functional design, data which demonstrate that there is a complete

system solution associated with the recommended prime functional design are

required in Function D. To generate these data, activities D-4 and D-7 must

thoroughly explore all of the man-related activities that must follow in the

development cycle. To explore and predict the feasibility of carrying out each

of these man-related activities, D-4 and D-7 must employ the special areas

within human factors technology and biotechnology associated with each. As

a result of these exercises, D-4 and D-7 quite naturally become the wellspring

from which the subsequent personnel product-related activities will issue.

The specific activity group that is most closely related to D-4 and D-7 is

the group of activities concerned with the technical management of personnel

products development (see Chapter V). To carry out the required technical

management, this activity group requires the data and experience of activities

D-4 and D-7 as a platform for an overview of personnel products development

and the relationship of personnel products to the total system effort.

Resources Needed

If activities D-4 and D-7 are seen as the precursors of the activity group

that is concerned with technical management of personnel products develop-

ment, then the personnel resources required to implement D-4 and D-7 will

be seen to be compatible with the personnel resources required to implement

the following technical management activities. It is probably important to see

this relationship because it lends extra justification to the demands which

should be met for highly trained senior human factors and biotechnological

personnel to implement D-4 and D-7. Implementation of these activities will

require a thorough consideration of all of the activities in the model that are

related to personnel products in Functions E, F, G, and H. These activities

cover the gamut of specialization within human factors and biotechnology. To

predict the manner in which these activities may be carried out such that they

will take full advantage of the best state of the art requires personnel with

broad technical training and with previous experience in implementing the kinds

of activities they are trying to predict. It also requires personnel with manage-

ment skill to preclude the planning of activities which are simply not manageable.
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Yet another reason for requiring broadly trained, experienced personnel
derives from the fact that there must be continuous interaction among all of
the specialists involved in Function D thus suggesting that it will be advan-
tageous to employ as small a group as possible. To have a small, effective

group requires that the members of the group all have a diversity of skills at
a relatively high level.

There is nothing inherent in the nature of the work involved in Function D

which requires resources other than highly skilled personnel with "pencils and
paper. " However, from time to time, it may be necessary to resort to mock-
ups and even to applied experimentation in order to develop data necessary to
support a recommendation with respect to the allocation of performance to
man. The requirement in this regard is most stringent with respect to activi-
ty D-7 for the size of the crew in the local segment must be stabilized in the

output state of Function D. The data gathered with respect to the remote seg-
ment do not have to support a final recommendation with respect to the alloca-
tion of functions to operators.

Recommendation of Operator Performance
Allocations and Crew Size

Activity D- 4 (Remote)

The output of this activity includes the functions recommended for imple-

mentation by the remote segment crew members. Specific attention is direc-

ted toward those functions in the prime system design that are to be allocated

for implementation by operator performances. Supporting data justifying

these recommendations must be included for these data must provide a basis

for the functional design of the prime system to be stabilized in the output of

Function D. Therefore, consideration should be given to the allocations that

would be made for differing crew sizes. The functional design which is em-

ployed as the basis for the recommendations must be the same functional

design that is employed as the basis of hardware recommendations. Whereas

it is necessary that crew size for the local segment be stabilized in the output

of Function D, it is not necessary that data be provided to stabilize the crew

size for the remote segment. What is required is that sufficient data be pro-

vided to enabIe stabilization of a complete prime functional design with
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confidence that the stabilization will not result in personnel products problems

later in the development cycle as a consequence of the limitation placed upon

design by stabilization.

The key input to activity D-4 derives from D-2; like the input to activity

D-7, it is based upon analyses of the system as a whole and of the remote

segment in particular. Unlike the input to activity D-7, it does not contain

weight, power, and volume budgets. It does contain a reliability budget, and

identification of the manner in which the output of activity D-4 will be evalua-

ted.

Activity D- 7 (Local)

The key output of this activity is a documented recommendation of the

local functions in the prime functional design of the system that should be

assigned for implementation by human performance. Recommendations should

be provided for each of several different crew sizes so that crew size may be

chosen without redetermining operator performance allocations iteratively.

Thus, the crew sizes considered should include every crew size that is a

likely candidate for adoption, but one crew size should be recommended.

Supporting data should be provided for the recommendation of crew size and

for the allocation of operator performances for each of the various crew sizes

considered. The functions allocated for operator performance should be func-

tions in the prime functional design that is recommended. If variations in the

prime functional design are presented for consideration, then recommended

operator performance allocations for each variation should be provided.

The supporting data provided should include data which demonstrate that

selection of the recommended prime functional design and that acceptance of

the recommended operator performance allocations will not preclude the

completion of the design and fabrication effort with delivery of an opera-

tional system of the desired cost and quality. Thus, data must be pre-

sented to show that there is at least one acceptable complete system

solution within the boundaries established by the recommendation (from

the standpoint of personnel products development).
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The key input to D-7 is a requirement statement which derives from

activity D-3. Activity D-3 will have been carried out for the purpose of iden-
tifying the major physical packages which will make up the system that is to be
developed. These physical packages will have been generated on the basis of
an exploration of alternative functional designs and will relate to a specific
functional design family. The requirement which is the input to D-7 will
identify the major physical packages and the categories of functions to be im-

plemented by each. It will also present tentative weight, power, volume, and

reliabilitybudgets, and will set forth the criteria by which the output of activi-

ty D-7 will be evaluated.

Discussion

Of the two activities in this group, D-4 is, in one sense at least, the

simpler one. Thus, D-4 does not have to be carried out under constraints of

weight, power, and volume, as does D-7. We will begin by discussing D-4

and then extend our concern to the special aspects of D-4, which derives from

the fact that there is a basic weight constraint to be considered.

There are two basic ways in which D-4 may be related to the parallel

efforts in Function D that are concerned with hardware packages. One ap-

proach to D-4 might be to permit the hardware-oriented activities jointly to

generate -_ ......... _.... _-" __1 _^__ .... prime _; ...... , ..............

ploy D-4 for the purpose of identifying those functions in each prime function-

al design that might be implemented by means of operator performance. A

different approach would be to engage activity D-4 in the initial development

of the alternative functional designs in concert with the hardware-related

activities. The latter approach might be expected to produce functional de-

signs that take advantage of the capabilities of man in more ways than func-

tional designs produced without the active participation of activity D-4. And,

in general, it might be argued that it is desirable to consider a broad spectrum

of types of system solutions. One may, however, argue well for the former

approach. In most aerospace systems, hardware packages may be associated

in a more or less meaningful way with a collection of related functions, so that

the underlying functional basis for each hardware package may be comprehended.
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Indeed, many hardware packages are named for the class of function which

they implement; for example, propulsion system, guidance system, and so on.
The performances which are eventually allocated to crew members, however,
seldom form a coherent group in this manner. They tend to be performances
from here and there throughout the overall functional flow of the system. They
are the ones for which man is the means of choice. The fact that man is typ-

ically employed in this manner makes it difficult to place a specific require-
ment on activity D-4, and makes it difficult to conceive of a set of system
functions that might be identified as of primary concern to activity D-4.

Without intending to imply that it is a superior approach, but merely to
simplify the discussion, we will assume that activity D-4 is initiated in paral-
lel with the hardware-oriented functions at the package level, and that the pro-

cess of generating alternative functional designs is an interactive one among

all activities in parallel.

In theory, Function D might be initiated by a Basic System Specification
which does not identify a preferred type of system solution. Such a Basic

System Specification would give designers in Function D maximum freedom to
explore alternatives and to pick the system solution family and the stabilized
prime system design with the highest desirability. In fact, by the time a real
development cycle enters Function D, the solution approach of choice has been
identified and work in Function D will focus upon an exploration of alternative

members of the family for the purpose of identifying a preferred subfamily

defined by a given overall prime functional design. If a preferred system
solution family is identified in the Basic System Specification, then there must
have been exploration of that family in Function C, and there must be existing

data which identify various subfamilies, and which identify the penalties and
benefits associated with each. Such data will provide a basis for an immediate

entry into the process of generating the required functional design in Function
D. It can therefore be expected that activity D-4 and the associated hardware-
related activities for the remote segment will begin an immediate interactive

process with each other and with the parallel activities concerned with the
local segment.
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The functional design of the desired system will not identify the packaging

of means, and, therefore, there will not be component arrays of functions

within it which neatly fit into one segment or the other, or which neatly fit into

one "subsystem" package or the other. The packaging will be made up after

the fact in the manner which best achieves overall development cycle goals.

Therefore, the initial consideration of the functional design of the system will

not be a process in which subtasks can be cleanly called out and allocated to

activities. Rather, initially, the lines of demarcation between activities may

have to be ignored to a large extent until acceptable overall functional designs

have been elaborated to an extent wl_/ch permits identifying the likely ways in

which subsystem packages will be configured. Activity D-4 may therefore

start out without a clean demarcation of its proper concern and may gradually

work toward an achievement of that demarcation.

The alternative functional designs considered in Function D will not and

cannot be developed in a medium that is void of means considerations. In the

case of an aerospace system, the hardware means will be at the heart of the

matter of design, and human performance will be employed when it is justifi-

able to complete the set of means necessary to implement a functional design.

This fact establishes a "follower" position for activity D-4 different from the

role of a similar activity in a development cycle for a system in which man is

the central means; for example, a decision-making system. As alternative

functional designs within the fancily of choice are developed, and as possible

hardware implementation is identified, it will be the role of activity D-4 to

review these, to correct and extend them where there is a need to do so, and

to identify the functions which might be implemented by man in each. The

principal concern must be with the identification of operator performance.

Then, by considering the implications of various combinations of allocations,

the most defensible allocation must be identified for each prime functional

design under consideration. Ideally, optimal solutions from the standpoint of

activity D-5 will not be sought, but rather consideration will be given to alter-

natives along meaningful continua so that trade-offs can be made when all of

the studies of implications by hardware package groups are brought together

with data developed with respect to personnel products. Even when the num-

ber of alternative prime functional designs has dwindled as the result of
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comparisons, it will be desirable to continue the process of identifying alter-

natives and presenting study data parametrically. In the terminal phases of

activity D-4, it will be necessary to generate supporting data to show that if

the recommended functional design is accepted and stabilized, that it will be

possible to complete those parts of design and fabrication concerned with per-

sonnel products development, such that the resulting system will fall in the

neighborhood of the target cost and quality. Thus, it must be shown that there

is at least one approach to personnel products development within the recom-

mended prime functional design that will not give rise to system cost and qual-

ity problems because of personnel products problems.

It is not required that the output of D-4 or D-7 provide a basis for

stabilizing the allocation of operator performances in Function D. The firm

allocation of operator performances is a means allocation which should be

carried out in Function E.

Whereas variations in crew size are considered in activity D-4 for the

purpose of permitting trade-offs to be made in achieving a stabilized prime

functional design, in activity D-7 crew size is considered as a major topic of

concern in its own right. The output state of Function D must include a stabil-

ized crew size for the local segment to enable Human Support System design

to get under way immediately, to provide a basis for weight, power, and vol-

ume budgets, and a basis for the stabilization of the means design for the

prime system, all in Function E. Therefore, activity D-7 will differ from

activity D-4 in that specific study will have to be devoted to the implications

of employing crews of different sizes with respect to overall system cost and

quality. The input to D-7 will provide guidance with respect to weight, power,

volume, and reliability budgets, and study must be undertaken in D-7 to assist

in the development of data to support firm recommendations with respect to

these budgets in the output of activity D-9, which follows D-7 at the segment

level. To determine the implications of different crew sizes, it will be nec-

essary to investigate thoroughly and to predict requirements for the crew to

carry out maintenance activities, to operate the Human Support System, and

so on. It will be necessary also to determine the weight, power, and volume

that will be absorbed by the Human Support System needed for each crew size.
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The decisions made on the basis of the data generated by activities D-4
and D-7 will stabilize the prime functional design of the system and the crew
size for the local segment. Once this stabilization has been accomplished, a
major dcsign freedom, wi!! have been taken away, and all future design activ-
ities reiated to personnel products will be constrained within the stabilized

functional design and crew size. If activities D-4 and D-7 were not carried

out in Function D, it is unlikely that the stabilized function design achieved in
the output of Function D would permit an optimal system solution to be devel-
oped. The effect of attempting to "patch in" activities D-4 and D-7 at some
later time would be roughly equivalent to anattempt to patch in consideration
of a major hardware package, such as the propulsion system, at some later

point in the development cycle if propulsion means were not considered at all
in the selection of the prime functional design.
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V. TECHNICAL MANAGEMENT OF PERSONNEL

PRODUCTS DEVELOPMENT

Activity Group Requirements and

General Considerations

Products generated in a development cycle that are related to personnel

include analyses, manuals, equipment, personnel selection tests, training

materials, and human engineering designs. Thus, these products are inter-

im and final products of the activities in a development cycle that are related

to putting man into an operational system in an optimal way. The concern

of the activity group discussed here is to ensure that all of these interim and

final products meet allocated requirements so that the Cost and Quality tar-

gets for the operational system are achieved. The activities in this group

are concerned, therefore, not with the technical preparation of these pro-

ducts per se, but rather with the specification of what the products must be,

and with the test or demonstration of the fact that the products meet speci-

fication.

The basic requirement for the personnel products package activity group

derives from the complexity and number of personnel products required to

package man and his necessary accoutrements for a system. In developing

personnel end products for a very simple piece of equipment, the total actiw

ity could be shown as follows:

This single box would include determining what is required to meet the

performance specification, accomplishing the work, testing the results, and

delivering the end product and test data. In the development of simple por-

table weapons, for example, the only personnel product usually of concern

is the human engineering of the weapon for use by combat personnel; other

aspects of personnel products packaging are either not relevant to the prob-

lem, or are associated with adjacent systems. In this case, a one-box
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description might do. In aerospace systems, however, personnel products

and interim related products consist of many subsets of products for which

requirements or specifications must be established, and for which integrated

test and evaluation programs must be developed. This increase in complex-

ity creates the need for a special group of activities in the development pro-

cess that are devoted exclusively to the problems of allocation and enforce-

ment of requirements, and to the problem of integrating outputs produced

in answer to requirements. A diagram showing the typical relationship of

activities organized for this purpose is shown below:

In this diagram, Block A represents the activity of specifying require-

ments for the production of personnel products (or possibly of personnel

products designs} in Blocks B, C, and D. This group of three blocks in

parallel represents the activities which produce products and test data to

show that they meet the specifications. Ideally, the specifications will be

given in terms of the criteria and methods by which the end products of

Blocks B, C, and D will be tested. Block E represents the activity of pro-

viding for the integration of these end products to meet the specification

which was the initiating input to Block A.

The general model shown above could be applied equally well to the de-

velopment of hardware, in which case the Blocks B, C, and D would repre-

sent the production of hardware packages. The analogy with the hardware

situation is apt, since in the area of personnel products development there
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is growth in specialization similar to that experienced in hardware develop-

ment. This growing specialization generates an additional requirement for

imposing an activity responsible for technical management on the personnel

products development activities.

If effective technical control of the personnel products activities is to

be exercised, there must be a continuity of effort on the part of the person-

nel products activities. The above simplified model shows one activity (A)

as simply providing inputs to B, C, and D, and then shows a second activity

(E) as the picture at a later point in time to test the products of these activ-

ities. To provide effective integration of the activities in the various blocks,

and to ensure compliance with schedules and cost, an additional function must

be added to the above model. For purposes of the development cycle model,

this additional function is identified as a ph___ifunction. The relationship of

the ph___ifunction is shown in the following diagram:

i .....A ---t _ r ....
I
L .... J

-to -

E

In effect, the ph___ifunction in the above model maintains continuity of

technical control between time t 1 and time t 2 .

In the full development cycle model, there are many arrays of activities

which match the model given above in terms of activities A, B, C, D, and

57



E. In each of these arrays, the activities which correspond to A and E in
this model are concerned with the technical management of other activities

which produce personnel products or personnel products designs (represented

by B, C, D). In this chapter, it will be our objective to identify all of these
activities in the model that are concerned with the technical management of

personnel products activities. It will also be our objective to identify how
these technical management activities relate to all of the other activities in
the development cycle. In this discussion, we will include the concept of

the phi function, which is a necessary function in the real world of technical

management as opposed to the somewhat ideal world described by the "GO"

model. The technical management activities are required to ensure that the

personnel products development activities in a real-world development cycle

do not stray so far out of bounds that the cost and quality of the delivered

end product will be compromised.

Relationship of the Group to the

Development Cycle Model

On each of the last four pages of the development cycle model, the per-

sonnel products package activity group provides the starting point and ter-

minal point of work on personnel products. The techniques and approaches

used in the remote segment are so similar to those used in the local segment

that the emphasis in this and later sections of this chapter will be focused

almost exclusively on the local segment. We assume the reader will regard

what is said about the local segment as applicable to the remote segment

except as noted.

Specific activities within the local segment of the personnel products

package activity group include the pairs: (E-4 and E-14) (F-4 and F-12)

(G-4 and G-20) (H-4 and H-16). The corresponding pairs in the line of de-

velopment of the remote segment are: (E-3 and E-13) (F-3 and F-11)

(G-3 and G-19) (H-3 and H-15). Formal consideration of the personnel

products package (in the local segment) begins in Function E with activity

E-4. However, many of the activities that have preceded this point in the
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development cycle are directly relevant to the activities of personnel prod-
ucts packaging. Assuming that consideration will be given to all that has
preceded personnel products packaging, several of these activities are wor-
thy of special note. Early in the development cycle model (activity A-2),
the Q scoring formula is stabilized. The parameters of this formula and

their derivatives are especially critical to the packaging activity. Once this
formula is established, the packaging activity is limited in the types of prod-
ucts that can and should be produced, and in the types of measures that can
be applied to these products. Criteria for quality, other than Q, can be

used in a specification for a specific personnel product activity only if they

are derivable from the basic elements of the Q scoring formula. This elim-

inates from consideration such criteria as "good human engineering practice,

and establishes the basic structure for the packaging activity.

A second major activity with implications for personnel products pack-

aging is activity C-6 which provides data regarding the cost, quality and

probability of development success of man-related solutions to the system

problem. This activity provides the first "hard" data regarding the relation-

ship between man's performance capabilities, C, Q, and Dev. Q. Although

these data will be improved in later activities, this initial cut is critical in

that it uncovers limitations on solutions that might be available for use in the

packaging activity. For example, data resulting from_this activity might

indicate that training alone would not be an effective approach for attaining

the requisite human performance capabilities required for the system.

A third major source of impact and data for the personnel products pack-

aging activity is the Basic System Specification which is provided as an in-

put to activity D-1. This specification summarizes the findings of the pre-

ceding functions (Functions A, B, and C) and may further limit the solutions

available by providing "customer accepted" data regarding human perfor-

mance capabilities.

The fourth activity which has considerable impact on the packaging ac-

tivity is activity D-7 which results in recommended operator performance

allocations and crew size. This activity provides not merely the recom-

mended solution to the "crew-role" problem but also the supporting data on
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which the recommendation is based. These supportive data provide the

major input to the packaging activity since they will include not only the
available solutions within the selected approach, but also the probability
estimates of success for each candidate, and the preliminary cost estimates.
The initial processing in the packaging activity will consist in a further defi-
nition and refinement of these data in greater detail and depth.

The eight activities contained within the personnel products packaging
activity for the local segment can be treated, for discussion purposes, as
consisting of four pairs (e. g. , E- 4 and E- 14} which bound personnel prod-

ucts activities for a given function. The first activity in each of these pairs

provides the specification of requirements allocations to be met by the vari-

ous personnel products. The second member of the activity pair provides

the application of the verification and integration processes to the actual out-

puts of the personnel products activities.

As the development cycle moves through the functions, the degree of

detail with which allocations can be made in the packaging activity increases

as the freedom for selecting alternative approaches and allocations decreases.

A significant change in the nature of the packaging activity pairs occurs in

Function G. Prior to this point, the packaging activity provides direct input

of specifications into the various technically-oriented personnel product ac-

tivities. For example, in Function E, activity E-4 provides input directly to

activities E- 9, E- 10, E- 11, and E- 12 which cover recommendations for

maintenance functions, maintenance of operator performance, human engi-

neering of operator interfaces, and functional and means design of the human

support system. When we reach Function G, however, the packaging activity

provides specification not to individual personnel products activities but to

two major groups of activities: those directly concerned with achieving hu-

man performance capabilities, and the Human Support System. Although

these two major groups may proceed independently at this stage of develop-

ment, they must nevertheless respond properly to each others needs. To

ensure that they do respond properly, the packaging activity assumes a tech-

nical monitoring role over them, and relegates the technical control of the

individual personnel products activities to a new pair of monitoring activities,

activities G-6 and G- 18 (in the local segment). (See Chapter XI. )
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The final outputs of the packaging activity group occur at activity H-16

with the integration of the complete personnel products package which in-

cludes a verified set of personnel, materials for maintaining their perfor-

mance, and a Human Support System to protect this performance capability

from environmental degradation. These products have been tested as an

integral unit and are ready for insertion into the operational system.

Resources Needed

To ensure adequate staffing of the personnel products packaging activity,

either of two approaches may be utilized. The first approach would be to

initiate manning of this activity prior to the actual time the activity would be

performed. The initial skeleton group would accomplish preliminary plan-

ning and would develop the necessary analytical tools for accomplishing the

activity. The second approach would be to utilize personnel already involved

in the system development cycle for staffing the packaging activity group. It

would follow from the discussion of the relationship of this activity group to

preceding activities that the likely candidates would be some of those person-

nel responsible for activities A-2, C-7, and D-7, all of which are essentially

precursors of the packaging activity. This second approach would have the

advantage of utilizing the experience gained in the preliminary activities

throughout the development cycle and would thus provide continuity in the im-

plementation of the development cycle model. Regardless of the approach

taken, the manning requirements will increase in this activity as progress is

made through the development cycle, at least until Function G when the crew

package technical management group may drain off personnel and responsi-

bilities. This increase in manning requirements is due to the increasing de-

tail that will be encountered in the later activities of this group and to the

increasing complexity of testing and verification that will be required for the

later interim and final personnel products.

The requirements for personnel assigned to this activity group are best

summarized by the term "diversity. " Whereas an activity such as E-11,

dealing with the "human engineering" of operator interfaces, required pri-

marily practitioners of the specific discipline of human engineering, the
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packaging activity requires a multidisciplinary approach. This is necessi-

tated by the fact that this activity is preparing allocations and specifications

for all of the other personnel products activities. If these specifications are

to be practical and meaningful to the quality elements of the system, they

must be prepared by personnel who are familiar with the disciplines involved

on the personnel products side, and with the system concept and quality for-

mulations on the systems side. Personnel who have been cross-trained in

several relevant disciplines would be ideal for this assignment. A secondary

characterization of the personnel required for staffing this activity group

would be the word "senior. " While it is true that every organization expresses

a need for senior personnel, it is critical that this activity be staffed with a

higher percentage of senior personnel than other personnel products activities.

The reason for this derives from the nature of the activities required of the

group. The specification of requirements for personnel products is essentially

a supervisory or technical management function. Further, the implementa-

tion of the phi functions means that personnel in this activity will have to serve

as technical monitors, trade-off and interface arbiters, and, finally, as de-

cision- makers.

The amount and type of equipment required for implementing the activity

depends on the complexity of the system and the specific techniques needed

for verification and testing of personnel products. Such verification may re-

quire equipment ranging from simple cardboard mock-ups to complex opera-

tional and environmental simulators. The actual fabrication and operation of

these devices may not actually be the responsibility of the personnel products

packaging activity, but the requirements for the equipment must be delineated

and defined by this group, as well as the requirements for operating and test

procedures.

In addition to direct equipment requirements such as simulators, this

activity will normally require data-processing equipment support. The data-

processing equipment and attendant support personnel need not actually "be-

long" to the packaging group, as long as they are responsive to the needs of

this group for a complete, usable, up-to-date data pool covering all aspects

of personnel products development for aerospace systems.
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Special Note

This group of activities does not lend itself readily to the format of the

chapters concerned with design and fabrication activities. The primary prob-

lem of exposition is that the activity pairs have much in common; all imple-

ment a common technical management strategy. For this reason, the dis-

cussion which follows will treat the management pairs in a modified format.

Activities E-4 and E-14 will be discussed in greatest detail; the other mem-

bers of the group will be discussed in terms of their unique attributes only.

Contributions to Functional Design of the Additive Set and Selection

of Personnel Products in the Prime System

Activity E- 4 (Local)

Outputs

The primary outputs of this activity are the requirements and specifica-

tions for the following personnel products: recommended maintenance func-

tions, recommended maintenance of operator performance, articulation of

operator interfaces, and functional design of the Human Support System (E-9,

E-10, E-11, E-12}. The specifications will allocate a tentative cost and time

budget to each of these activities. The specifications will also indicate what

tests and demonstrations will be used to determine whether or not the outputs

of E-9, E-10, E-11, andE-12 are good.

The outputs (specifications) of this activity should be sufficiently detailed

for the follow-on activities to clearly understand what they must produce and

how the "goodness" of the product will be tested.

In addition to specification of the final testing to be applied to the person-

nel products, the output of this activity should specify the techniques to be

employed in interim testing by the phi function. Interim monitoring is re-

quired to ensure that no time loss is incurred in meeting schedules due to

retrofit activities required as a result of unacceptable personnel product out-

puts.
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The outputs associated with the remote segment (E-3} will be of the same

type as for the local segment (E-4). The only difference is that certain qual-
ity-related elements, such as weight and volume, may not be as critical for
the remote segment as for the local segment.

Requirements

The first major requirement for this activity derives from the complexity

of the personnel products area. In Function E there are four parallel person-

nel products activities (E- 9, E- 10, E- 11, E- 12), each of which results in

multiple sets of personnel products. Activity E-4 is required to allocate re-

quirements among these activities and to provide technical control in meeting

these requirements. The second major requirement for this activity is that

specific action is required to ensure that the personnel products developed in

Function E are credible. This means that predictions based on these outputs

with regard to probability of success of the development cycle will be valid,

and that there will be no unanticipated problems in future activities of the

development cycle model. Insurance of credibility of personnel products is

achieved through the development of test procedures, both interim and final,

in this activity (E-4}. Of course, credibility cannot be assured by a test plan

alone, the plan must be implemented. The requirement for providing credi-

bility therefore applies equally to activity E-14.

In the event the output of activity E-4 is late, two possible results may

occur. If a decision is made to hold up work on the following personnel prod-

uct activities, there will be a general slippage in meeting the overall schedule.

If a decision is made to go ahead with incomplete specifications, this will re-

suit in wasted activity on the part of the follow-on activities which will be

lacking guidance as to the specific requirements which must be met. In most

real-life development cycles, the latter problem is most likely to occur since

staffing of the following activities has probably already occurred and the "theory

is" that it is better to have these personnel work in an undirected fashion rath-

er than to do nothing.
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In the event there were no outputs from this activity, the results would
be dependent basically upon the individual abilities of the personnel manning
activities E-9, E-10, E-It, andE-12. T, is ^__-_1pu_._.e *_-* they .... 1_ over-
come some of the problems through self-imposed requirements based on inter-
face agreements among the various affected activities, but it is unlikely that
overall system Q and Cost goals could be achieved.

Initiating Inputs

The diagram below is a copy of that part of Function E with which this

activity (E-4) is concerned. Overall, the design state which is being pro-

duced in Function E is the design of the prime equipment, and the functional

design of the additive set which this prime equipment requires. The output of
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E- 16 in the figure is simply the local segment part of this design state. Ac-

tivities E-16 and E-2 taken together form a technical monitoring pair which

is responsible for seeing that this design state is produced, but the actual

design work is done within the two dotted boxes which have been superimposed

on the figure. Dotted box A represents the hardware products of this design

work, and dotted box B represents the personnel products of the design work.

The responsibility for seeing that the personnel products work (box B)

gets done falls to activities E-4 and E-12, which act as a technical monitoring

pair for the individual personnel products activities (E-9, E- 10, E- 11, and

E-12). Thus, as the pilot activity in the technical monitoring pair (E-4, E-12),

activity E-4 is the recipient of the initiating input which gets box B going. This

initiating input is a work statement which comes from the activity which has

overall responsibility for the local segment, namely E-2. To be the most

useful, this work statement should be a complete specification of how the prod-

uct of box B is expected to perform. Ordinarily it should not be a prescrip-

tion for how these products should be produced. This should be left to those

who have the most contact with what is to be produced, namely the workers

within box B.

The personnel products part of the output of E- 16 is first of all an iden-

tification of the maintenance technician performance required to maintain the

prime means (both human prime means and hardware prime means}. There-

fore the work statement which E-2 provides for activity E-4 should include a

precise statement of the prime functions and the probabilities of outputs which

must be obtained. This statement would provide a criterion by which to as-

sess prime hardware plus any additive loops needed to meet probability of

output goals. Certainly not all additive loops would be implemented by main-

tenance technician performance. Indeed, some prime performance might be

implemented solely by maintenance hardware. Nevertheless, by logical de-

duction, the basis for testing the box B outputs can be derived from specifi-

cations of the prime functions to be implemented.

Given a list of required human performances, these provide the criterion

for judging the goodness of the Human Support System which must also be
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designed within the personnel products part of Function E. The Human Sup-
port System is certainly as much a piece of hardware as any other hardware
in the local segment. It is unique, however, in that the sole mcasure of its

goodness may be specified by personnel products people according to the de-
sired effect it should have on human performance. Therefore its design is
placed in the personnel products package.

The personnel products group must also provide the design information
required to finish the design of that prime hardware which is to be used by
men (human engineering of the prime equipment). In this case, the work

statement would include a requirement that those operator performances which
are to be provided be articulated with hardware so that no system reliability
is lost.

Thus, in every case, the work statement which E-2 provides to E-4, con-

tains the criteria by which the outputs of box B must ultimately be measured
in the operational system.

In addition to specifying this ultimate measure of goodness, the work
statement may specify some practical tests which will be applied to the out-
puts of box B as soon as the outputs are produced. Such practical tests are

just as important to E-4 as the ultimate tests, and in order to properly plan
the work of D-4, these practical tests must be known in advance. Part of the
practical test of the goodness of the D-4 output might be concerned with the
cost of producing these outputs, and the time it took to produce them.

Method

In order to relate this activity to the existing ideas regarding methodology,

it must be thought of essentially as the process of "setting up the personnel

products for evaluation. " Although the actual application of the evaluation

does not occur until activity E-14, the planning of the tests must take place

during this activity (E-4). A number of approaches have been suggested to

the evaluation problem; however, they have been oriented primarily to
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1
proficiency measurement in connection with training (Glaser and Klaus) or

2
evaluation of an existing system (McCormick) . An additional limitation in
their applicability to the present problem is that they do not emphasize the
derivation of requirements for the performance to be tested from the cost and

quality goals of the system. The methodology presented below, therefore,
takes advantage of existing personnel products evaluation techniques, but
modifies the approach to base these evaluations on system cost and quality
elements.

Task 1. Analyze personnel product requirements. 3 __ The initial task

in this activity is to analyze the requirements imposed on the personnel prod-

ucts area as presented in the output of the initiating activity (E: 2). From this

set of requirements, activity E-4 must in turn define the requirements which

are to be satisfied by each specific activity following E-4.

The first step in this process is to analyze the requirements from E-2

and to reexpress them, if necessary, in terms meanihgful to the personnel

products development process. Typical elements that might be included in

the set of requirements from E-2 include the following:

. A rough statement of the prime hardware performances which must

be sustained.

1
Robert Glaser and David J. Klaus. Proficiency Measurement: Assessing

Human Performance. In Psychological Principles in System Development.
Robert M. Gagne; ed. Holt, Rinehart and Winston, 1962, p. 419 et seq.

2
Ernest J. McCormick. Personnel and System Integration, Part Six.

Human Factors Engineering. McGraw-Hill Book Company, 1964, p. 569
et seq.

3
In this section the requirements for an activity are to be thought of as the

"purposes" for which the outputs of that activity are to be used. The require-
ments for an activity may also be thought of as the measures of goodness of
the outputs of that activity. (The ultimate measure of goodness of the outputs
is always: "Do they serve their purpose?" Other measures of goodness

• . . ,,

must always be derived from this ultimate measure. Thus, measure of
goodness and purpose may be thought of as equivalent concepts. )
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2. A rough statement of the prime human performances which must
be sustained.

3. An identification of the tests on the outputs which must be passed.
4. An identification of the allowed time to produce the outputs.

5. An identification of the allowed resources to produce the outputs.
6. An identification of constraints.

Task 2. Analyze supportive data regarding operator allocations. --

Supportive data developed in conjunction with earlier design work (particular-

ly the data developed in conjunction with the allocation of operator perfor-

mance in D-7) must next be analyzed to determine the constraints, such as

crew size, which these earlier designs impose. In addition, the previous

design activities provide a rich store of preliminary data concerning all of

the personnel products that are to be developed in the course of the develop-

ment Cycle. Although the degree of detail in these data is not as fine as it

becomes in subsequent design work, candidate solutions to personnel products

problems will have been identified and tagged with preliminary cost estimates

and probability of developmental success. This information must be orga-

nized so that personnel in E-4 will have available to them, in an organized

fashion, estimates of the range of cost per personnel product activity linked

to the probability of success.

Task 3. Preliminary specification of requirements for activities. --

Eventually E-4 must specify precisely what is required of its follow-on ac-

tivities. A precise specification should be in the form of a statement of how

the outputs of these activities must perform. It should state what the ideal

performance ought to be in the operational situation, and it should also state

what this performance should be in the practical tests which will be imposed

by E-4. Thus, in order to completely specify the requirements for the activ-

ities following E-4, these practical methods of testing the outputs of the activ-

ities must be known. In this task we shall neither devise a complete specifi-

cation of the requirements for these activities, nor shall we devise such

testing methods. Rather, in this task we must prepare an experimental spec-

ification of requirements which, although premature and incomplete, will

69



provide a basis for devising the practical testing methods in tasks 4, 5, and

6. Then, with these testing methods identified, in task 7 we may finally de-

vise a complete specification of the requirements which each activity must

satisfy.

In task I, the requirements which must be satisfied within personnel

products as a whole were identified. In task 2, all the constraints which

earlier design efforts had imposed were identified. In addition, task 2 iden-

tified and organized that part of earlier data concerning likely approaches

to personnel products problems. Thus task 3 consists of the synthesizing of

the information developed in tasks 1 and 2 and identifying requirements based

on this information. To accomplish this, all the information generated in

these tasks can be organized in matrix format with specific requirements

against personnel product activities. Subheadings under the requirements

entries might be potential candidates for meeting the requirements identified

by the earlier design data. For example, if a particular piece of equipment

could not meet specified reliability, potential candidates within E-9 (recom-

mended maintenance functions on prime equipment) might include: repair

with simple hand tools, repair with special tools or equipment, and manual

replacement of the malfunctioning unit.

Having organized the requirements per personnel product in a matrix,

the first step in using this matrix is to identify all relevant product activities

for each requirement. For example, a requirement to perform a tracking

operator task with a specified accuracy is clearly relevant to both E-10,

recommended maintenance of operator performance, and to E-1 1, human

engineering of operator interfaces. It is not relevant, however, to E-9, rec-

ommended maintenance functions on prime hardware.

Once the relevance of personnel products activities is established, the

next step in completing the matrix is to roughly determine for each relevant

requirement/product pair whether the listed candidates pertinent to that

requirement meet or exceed the stated requirement. All candidates not

meeting the requirement should then be discarded. Of the remaining can-

didates, all those that meet the requirement would be ordered by probability
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of success and cost. A quick trade-off would then be conducted to select the

"optimum" combination of cost and probability of success. This candidate

would then tentatively be assigned to the requirement. It should be remem-

bered that more than one personnel product may be required to meet a spe-

cific tolerance.

The final product of this task is, therefore, a preliminary identification

of the requirements imposed on each activity, and an assignment of candidate

solutions to each requirement. It should be remembered, however, that as-

signment of candidates is tentative, and is used only to enable a "nominal"

test plan for the activity outputs to be made.

Task 4. Select test and/or demonstration techniques, m In order to ob-

tain a complete specification of the requirements for the personnel product

activities in E, it remains to specify the test or demonstration techniques

that will be used in measuring whether or not the actual personnel product

outputs actually meet specification.

There are four general classes of test available for assignment to a par-

ticular activity output situation. These are:

1. Analytic procedures.

2. Mock-up demonstrations.

3. Simulation.

4. Field test.

Analytic procedures are essentially "table-top" or "paper" validations

of the output products. Although many times analytic techniques are not as

convincing as empirical techniques, frequently they are the only techniques

available in the earlier part of the development cycle. Typically they involve

the evaluation of human engineering drawings, analytic studies, and extrap-

olations of previous experimental and systems experience to the present sys-

tem development situation. An interesting aspect of such evaluations is that

they may be thought of as an evaluation of the methodology used to develop the

personnel products rather than an evaluation of the outputs themselves..An
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example of this might be the output of E-9 (recommended maintenance func-

tions} for an aerospace vehicle performing an earth orbital mission. Some of

the constraints imposed on this activity would undoubtedly involve crew time

available for performance of maintenance, and the time already committed to

operational functions. One of the critical aspects of the analysis, therefore,

would be crew time required to perform maintenance on the equipment which

requires maintenance to meet mission requirements. At the present time, the

only source of such data are zero-gravity earth simulations. The evaluation

of the outputs of this activity would consist, therefore, in an evaluation of the

appropriateness of the experimental studies selected for extrapolation, and

the analytic processes used for extrapolation to the system situation. It is

assumed, of course, that the outputs indicate that the maintenance can be per-

formed within the allowable time. The criteria applied in the testing of this

output is usually not thought of as directly derived from the system cost and

quality elements. Rather, it is thought of as derived from more general cri-

teria of analytic validity and is related primarily to the probability of develop-

mental success, and, of course, operational mission success.

Mock-up demonstrations include the use of both static and functional mock-

ups for the demonstration of the validity of particular personnel product out-

puts. The use of such devices is particularly appropriate to the area of human

engineering of operator interfaces (E- 11}. The only limitation on their use in

Function E is that such mock-ups would have to be constructed after the com-

pletion of the selection of hardware means. This probably limits the use of

such mock-ups in Function E primarily to static mock-ups that can be quickly

constructed of cardboard and similar materials. One of the major advantages

of mock-Ups in the real world which includes managers, is that they demon-

strate in three-dimensions the validity of outputs from personnel products

regarding the physical layout of the local segment, e.g., arm reach to critical

controls and location of displays within the visual field. Their use should be

seriously considered even in such an early function as E, since they are of

value even when they show only the general layout of major equipment units

when final decisions have not yet been reached on the layout of displays and

controls on console panels. A further advantage of the use of mock-ups for

demonstration of the validity of personnel product outputs is that they come a
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significant step closer to operational empirical data, even without the actual

operational mission environment.

Simulation as a technique for the evaluation of personnel product outputs

includes both operational simulation, with man in the loop, and computer sim-

ulation using a model of the operational situation, without man actually par-

ticipating. Operational simulation, with man participating, is usually not

appropriate at the period in the development cycle represented by Function

E. It is almost mandatory, however, when personnel products are tested at

a later point in the cycle, particularly in Function H, when the final person-

nel products are about to be inserted in the operational system. It is not too

early to consider the use of simulation models in Function E. A good example

of such simulation is the use of a computer simulation model to test the out-

puts of activity E-9 dealing _vith the allocation of maintenance functions to the

crew. Such models have been successfully used to predict the maintenance

load that can be imposed on man under given mission situations thus testing

the validity of the allocations under critical conditions. Such evaluation may

indicate that allocation of certain maintenance functions to man is feasible only

if no concern is given to the operational functions of the mission.

Field test of personnel products can only be accomplished after there is

at least a prototype operational system in existence that can be tested under

actual operational conditions. An exampIe of the ,tility of such testing is

seen in the programmed orbital missions in the Apollo program, prior to the

lunar mission. Such testing, of course, would be associated with Function

H in the development cycle model.

Selection of the appropriate technique for testing a specific personnel

product may initially be based solely on technical considerations. It can then

be traded off against cost factors. The integration of devices and equipment

required for conducting the testing program, e.g. , combination of personnel

products requirements with hardware testing requirements, is a management

function done by activities E-2 and E-12, and is not discussed here.

Task 5. Develop test plan. -- After the tests and demonstration technique

have been selected for each specific personnel product, they must be integrated
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into an overall test plan. This plan should be integrated first at the level of

the individual personnel product activity, and then integrated across activities.

It should be understood that the developed test plan resulting from this activ-

ity is itself preliminary in nature, and will be modified with the experience

gained during the performance of the various personnel product activities.

The components of such a test plan should include the following categories,

which are based on previous system studies.

1. Test objectives. This section should specify the products to be

tested, and should precisely identify target scores for each (derived from

Cost and Quality formulas}.

2. Ground rules. A specification of what personnel from the packaging

group will be involved in the testing, their functions and responsibilities, and

any support required from the personnel product activity concerned.

3. Subjects. If the test includes the use of subjects, e.g. , walk-through

of procedures in a mock-up, the number of subjects required and any special

qualifications should be specified.

4. Data collection personnel. The number of personnel required as ob-

servers at the test, who will supply them, and any special qualifications will

be detailed in this section.

5. Schedule. The calendar dates and sequences of the data will be

listed in the portion of the test plan.

6. Procedures. The specific procedures to be carried out in the test

will be presented and related to the test schedule. This section of the plan

will probably not be available with the initial publication of the plan since it

will be dependent partly on the results of the activity of concern.

7. Test design. This section should identify the rationale which links

the actual test procedures to the test objectives. If appropriate, the proposed

data analysis should also be presented. Finally, the equipment or instrumen-

tation requirements should be identified.
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8. Integration. The final section of the test plan should relate the vari-

ous personnel product tests to the overall test plan for the function of concern,

in this case Function E.

Task 6. Plan the phi function. -- The phi function is the e.__tension of

activity E-4 that covers the period of time between the output of specifications

from activity E-4 until the implementation of the test portion of those speci-

fications in activity E-14. This function is required to maintain effective

technical control over the various personnel product activities. Discussion

of this function has been arbitrarily divided between activities E-4 and E-14,

with the planning portion covered in this section, and the implementation of

the function covered under activity E-14.

Planning of the conduct of the phi function should include consideration

of the following five areas of activity:

1. Interim testing. To avoid out-of-tolerance conditions in the final

testing described above, interim testing should be conducted throughout the

life of the personnel product activities. This testing might be similar to that

specified for final testing modified, either through reduction in the thorough-

ness of the testing or reduction in the scope of the testing, by appropriate

sampling techniques for selection of interim products for testing.

2. Technical support. Interim testing is concerned with whether or not

the personnel products are meeting specification as they are developed. Tech-

nical support is concerned with obtaining correction of deviations revealed by

interim test results.

3. Interface control. The interface control of concern here is between

people rather than between hardware units. Two types of control are required

for effective functioning of the personnel products group. First, there must

be control of interface among the various personnel product activities. Sec-

ond, there must be adequate and effective interface with personnel responsible

for hardware development (in Function E those charged with the responsibility

of selecting hardware to implement the functional design of the prime system).

This control should be exercised through the establishment of procedures for
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interface contacts, maintenance of records of such contacts and their results,

and, finally, by participation in meetings.

4. Trade-off studies. The personnel products packaging activity group

is responsible for monitoring and serving as arbiter and decision-maker for

trade-off studies involving personnel products. This is true within the per-

sonnel products area, but not between the personnel products and hardware

areas. The conduct of this responsibility is similar to that described for

interface control.

5. Requirements reallocation. The packaging activity should develop

plans and techniques for reallocation of requirements imposed on the various

personnel products activities. Such reallocations may be required because

of unanticipated technical problems, breakthroughs in the state of the art, or

because of inappropriate allocations by the packaging group initially.

Task 7. Specification of requirements, m Once the complete test sched-

ule has been devised in tasks 4, 5, and 6, we may specify completely the

requirements which E-4 must impose on the individual personnel products

packages. These requirements on each activity actually form the initiating

inputs for that activity and tell it how its outputs are to be judged. Thus each

activity must be told how itfits into the overall test plan, and specifically

what tests are in store for its outputs. Included in the specification of require-

ments for an activity is the identification of the complete set of constraints

which itmust observe. These include constraints on time and money, on

weight, power, and volume, and on man-hours available from the crew to

perform whatever functions an activity might identify. In addition, specifi-

cation of requirements will include an identification of the ultimate purpose

in the operational system of each of the activity's outputs.

Ordinarily, the candidate solutions to the personnel products problems

which were identified and used by activity E-4 to enable the preparation of

a test plan are not intended to constrain the activities to use these candidate

solutions. Certainly, all the information which has been generated earlier

is available to the activities, but is not intended to restrict their search for
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more information and better candidate solutions. In fact, the whole purpose
of each individual activity is to search out and find the best solutions to its

assigned problems. It would defeat the purpose if earlier (and not as good)
solution candidates were forced on them.

Activity E- 14 (Local)

Outputs

The output of this activity is a recommended functional personnel prod-

ucts solution to the system probability-of-success problem. This recom-

mended solution is based on verified and integrated personnel products

resulting from the personnel product activities contained in Function E (E-9,

E-10, E-11, E-12). In addition to this primary output, activity E-14 will

also provide a supportive data package containing the results of the veri-

fication tests performed on personnel products.

Requirements

The requirements for this activity are similar to those for activity E-4;

namely, to provide technical control, integration, and verification of the

various personnel product activities contained within Function E. In addition,

the specific requirement for this activity is to provide the implementation of

the final test of the personnel products.

In the event the output from this activity is late, this would cause a gen-

eral schedule slippage of Function E since it would be a difficult, if not im-

possible, task to effect meaningful integration in activity E-16 if the person-

nel package were not available. If the output of E-14 were of low quality, it

would reduce the credibility of the functional solution and increase the pos-

sibility of problems later in the development cycle. If the output of this

activity were entirely missing, the only alternative available to following

activities, specifically E-16, would be to utilize the unverified outputs of E-9

through E-12 and attempt to integrate them into a meaningful whole. This

again would jeopardize the success of the development cycle by utilizing low
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credibility data with unknown consequences. In either the case of low quality
or missing outputs there would also be considerable danger of cost overruns.

Initiating Inputs

If E-4 and E-14 are viewed as part of one big function, (E-4, E-_, E-14},

the initiating inputs for this activity are the same as those for E-4. Thus the

initiating input for this activity is the work statement which comes from ac-

tivity E-2, in which the required performance from E-4 and E-14 is specified.

Alternatively, in the "Go" model, the outputs of E- 9, E- 1 o, E- 11, and E- 12

are the initiating inputs.

Method

The methodology for this activity is largely determined by the planning

accomplished in activity E-4. Essentially the methodology for this activity

consists of implementing (with modifications as required} the control and

verification program defined in E-4. This implementation encompasses four

tasks.

Task I. Implement the phi function. -- The phi function is implemented

in parallel with personnel product activities E-9 through E-12 since it must

integrate and control these activities in real time. As indicated in the dis-

cussion of activity E-4, this function includes the following:

I. Conduct interim testing.

2. Technical support.

3. Interface control.

4. Trade-off studies.

5. Requirements reallocation.

Since the plans for performing this function were previously established,

implementation will consist of applying the plans and techniques to the oper-

ating situation. Modification will undoubtedly be required as problems are

encountered in personnel product activities and in the control techniques em-

ployed. In addition to the listed items, there will be continual updating of
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the final test plan to ensure that the test program can be initiated on schedule
immediately following the output from the various personnel product activ-
ities.

Task 2. Conduct final verification tests. -- Again, this is an implemen-

tation of plans developed in activity E-4 and updated in task 1 above. Final

testing will include tests of single personnel product activity outputs and inte-

grated products as appropriate, in many cases there may actually be no ad-

ditional testing of products required in this task, since testing accomplished

within the activity itself will be monitored and may be acceptable as final veri-

fication of the products.

Task 3. Analyze and integrate results. -- This task includes the analysis

of test results conducted under task 2 and the integration of these results into

a recommended function personnel products solution of system success for

the first-order additive set. A complete matrix of requirements by personnel

product solutions can serve as the primary integrating technique for this task.

If all products are within tolerance, then it is simply a matter of entering the

obtained results in the appropriate cells of the matrix. In the event that ob-

tained results exceeded expectation, this data should be flagged and used for

potential reallocation of requirements in the follow-on functions. In the event

that any of the products fall below specification, then task 4 below will be re-

quired.

Task 4. Retrofit. -- If any of the personnel products fall below the speci-

fied requirements, it will be necessary to conduct retrofit activities. These

activities may be visualized as additional personnel product activities added to

the development cycle model. The first of these activities might be a capsule

version of whichever of the personnel product activities has developed the

faulty product (E-9 through E-12). The second activity would be a corrective

activity (E-14). Hopefully, the extent of work in each of these added activities

would be significantly less than in the planned activity. This assumes that the

fault concerns only a partial product of an activity rather than a total failure.

It further assumes that not all of the testing and integration conducted in E- 14
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would have to be repeated, but rather the new test data could be integrated
into the original functional recommendation.

Selection of Personnel Products in the Additive Set

Activity F-4 (Local}

Outputs

The outputs of this activity are the specifications of requirements that

must be met by the personnel products resulting from activities F-8 (main-

tenance of technician performance}, F-9 (design of maintenance interfaces},

and F-10 (performance on maintenance and Human Support System equipment}.

In addition to specifying and allocating cost and quality elements to these ac-

tivities, the outputs must also specify the tests and demonstrations to be used

in determining whether or not the outputs meet specification.

Requirements

The primary requirement, as was the case for activity E-4, is to ensure

that a personnel products solution for the maintenance system and maintenance

interface problem is achieved within target cost and quality. It is also re-

quired to maintain technical control over these activities to ensure that there

are no schedule slippages resulting from inappropriate solutions which are

not detected in a timely fashion.

Initiating Inputs

The initiating input for this activity is the output from activity F-2 which

specifies to activity F-4 the requirements that must be met within the person-

nel products area, both with relation to quality and cost. This output from

F-2 represents the same kind of requirements information provided by activ-

ity E-2 to E-4, as modified by the activities contained within Function E.
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Method

The methodology required for accomplishing the activity is the same as

that discussed for activity E-4. At this point in the development cycle there

would be little significant change, for example, in the types of testing that

could be employed in verifying the personnel product activity outputs.

Activity F- 12 (Local)

Outputs

The primary output of this activity is the recommended maintenance sys-

tem and maintenance interface design. This output goes to activity F-14 for

integration into the recommended complete additive set for the local segment.

In addition to the prime output, supportive data resulting from the verifica-

tion process as well as the outputs from the preceding personnel product ac-

tivities will be provided.

Requirements

The requirements for this activity are based on the need for credibility

estimates of the validity of the personnel product solutions to the maintenance

system problem. These credibility determinations are necessary to predict

the probability of success of the development cycle.

Initiating Inputs

The initiating inputs for activity F-12 are the outputs of F-8, F-9, and

F-10.

Method

The method employed in this activity is the same as that discussed for

activity E- 14. Methodology is relatively straightforward in this activity since

it is primarily an implementation of plans developed in activity F-4.
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Preparation of Fabrication Tools and

Models for Personnel Products

Activity G-4 (Local)

Outputs

The primary output of this activity is an allocation and specification of

requirements based on cost and quality objectives for the crew package con-

trolled by activity G-6 and for the Human Support System, activity G- 16. This

output must also include the specifications for the tests and demonstrations

that will be used to verify whether the personnel product outputs are within

specifications.

Requirements

The requirement for this activity is the same type as that for E-4 and

F-4, It is to provide effective allocation of requirements among personnel

product activities, and provide technical control over the attainment of these

requirements.

Initiating Inputs

The initiating input for this activity is the output from activity G-2 which

specifies the requirements that must be met by the personnel products pack-

age in developing fabrication plans and tools.

Method

There is a departure in the methodology appropriate to this activity from

the pattern of activities E-4 and F-4. This results from the fact that the

personnel product activities accomplished in Function G have been grouped

into two units. The man package (G-12, G-13, G-14, G-15) is bounded by

activities G-6 and G-18 which are similar to the packaging activities of E-4

and E-14 in Function E. The Human Support System is covered by activity
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G- 16. Because of these intervening activities it is no longer necessary to
make specific allocation of requirements to specific personnel product activ-
ities. Rather, the allocation is made by this activity between the man pack-

age and the Human Support System package. This change also affects the
planning of the phi function since this function will now be used to monitor

only the operations within G-6, G-16, and G-18, rather than all personnel

product activities contained within Function G. This change in effect intro-

duces an additional layer of technical management and control into the person-

nel products packaging activity. A final change in methodology for this ac-

tivity over previous similar activities is that, at this point in the development

cycle, there is greater potentiality for use of more sophisticated testing tools,

particularly the use of simulators with man in the loop.

Activity G-20 (Local)

Outputs

Thr primary output of this activity is the recommended fabrication plan

and tools for all personnel products. This output is utilized by activity G-22

to develop the total fabrication plan and tools for the entire local segment.

In addition to the primary output, a supportive data package will be provided

covering the results of the verification testing of the various personnel prodl

ucts and the analytic integration of these results.

ReQuirements

The primary requirement for this activity is to accomplish the testing

and integration of personnel products resulting from the various activities so

that a determination can be made of the probability of success of the develop-

ment cycle with reference to the personnel products area.

Initiating Inputs

The mitiating inputs for this activity are the outputs of G-18 and G-16.
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Method

As indicated above, the separate testing of personnel products has been

completed prior to initiation of this activity. The testing still to be accom-

plished in this activity, therefore, is the total integrated testing of the person-

nel products package for Function G. Again, this type of activity is essen-

tially an implementation of plans made in a preceding activity (G-4). The

only significant change over previous similar activities is in the level of so-

phistication of the testing employed (e. g., simulation} and the consequent in-

crease in time and staffing required to accomplish the test program.

Fabrication of Personnel Products

Activity H- 4 (Local)

Outputs

The output from this activity is an allocation of requirements for the per-

sonnel products activities specifying the cost and quality elements that must

be met in the output from these activities. The allocated requirements are

split between the man aspect of the personnel product package and the Human

Support System. The specification must also include the proposed testing of

personnel products that will occur in activity H-16.

Requirements

The primary requirement of this activity is to ensure that the final fab-

ricated personnel products package meets all cost and quality elements of

the requirements imposed on the personnel portion of the system. The out-

put of this activity, therefore, must provide technical control of the various

personnel product fabrication activities.
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Initiating Inputs

The initiating input for this _°o+_'T_+_T._jis _.=_+_T_÷y..... H-2 which specifies, the

requirements that the total personnel products package must meet with ref-

erence to cost and quality.

Method

The methodology applicable to this activity is the same general method

discussed under activity F,-4, as modified in activity G-4, since again there

is the single split between man and human support activities without detailed

technical control of the activities that make up each of these technical areas.

One shift in method for this activity is the requirement that tests proposed in

this activity represent the final testing phase before actual system operation.

This requirement suggests that the greatest degree of sophistication of testing

be planned within the limits of cost. In effect, the tests planned in this activ-

ity certify that the personnel products package, selected and trained personnel,

job aids, and material in support of human performance, as well as the Human

Support System are ready for installation in the system.

Activity H- 16 (Local)

Outputs

The output of this activity is the complete personnel products package

ready for integration with the hardware units in activity H-18, and installation

in the system in activity H-19.

Requirements

The requirement for this activity stems from the basic requirements of

the need for the system and for verification that a major segment of that sys-

tem, the personnel products package, is ready for operation in that system.
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Initiating Inputs

The initiating inputs for this activity are the outputs of H-12 and H-14.

M ethod

The method for accomplishing this activity is similar to that of preceding

verification activities. The only difference is the criticality of this test in

that once certified for the system, there are no additional tests and possibil-

ities for retrofit within the development cycle. The only retrofit after this

activity comes as a result of a malfunction in the operational system, or a

mission abort. The implication of this criticality is that quality control of

the test situation should be intensified to the limits of available resources.

There is also greater possibility for error in the test situation, since this

represents the most sophisticated test in the whole development cycle.
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VI. DETERMINATION OF MAINTENANCE PERFORMANCE
(ADDITIVE FUNCTIONS) TO BE CARRIED OUT BY MAN

Activity Group Requirements
and General Considerations

It is a fact that every aerospace system must include an additive set. In

every system the additive set is included purely for the purpose of achieving
target overall system probability of success. Every function in the additive
set must be justified in terms of its positive contribution to the probability of

system success; else, it must not be included.

The elements in the additive set for any system are additive loops, each
of which is composed of a connected sequence of functions. One subset of
additive loops will consist of those functions which act directly upon prime
system means. Another subset will act upon the means in the first subset,

and so on for as many orders of subsets as desired.

If we consider the subset of additive loops which acts directly upon prime
system means, we may note that some of them will act upon prime system
hardware and some will act upon operator performances. Similarly, in the
other subsets of additive loops some of the additive loops will act upon mainte-
nance hardware and sorr,e upon maintena_ucetechnician performance. In this

chapter, we are concerned only with those additive loops which act directly
upon hardware, whether it is prime hardware, or maintenance hardware, or
personnel support system hardware.

If we consider further those additive loops which act upon hardware, it
will be seen that some of the functions in these additive loops will be imple-

mented by means of maintenance hardware and some will be implemented by
means of maintenance technician performance. Because it is not within the
state of the art to develop aerospace systems that do not require maintenance
technician performance for the purpose of sustaining hardware performance
capability, it is necessary in the course of developing every aerospace system
to decide what maintenance technician performances will be employed. In this
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chapter, we are concerned with those activities in the development process

that bear directly upon determining the maintenance technician performances

to be employed. Because maintenance technician performances are employed

in additive loops to contribute to the reliability of implementation of system

functions, we will be concerned directly with the probability-of-success re-

quirement in the system Quality score formula. In assigningto man the respon-

sibility for carrying out additive performances, it will be necessary to consider

the probability-of-success factor jointly with cost, to assure that the decisions

which are made will not drive the total system solution out of the target Cost,

Quality area for the system.

In general, man performance will be employed in additive loops in three

different ways: (I) man performance will be employed as a standby redundant

means to take over where hardware fails; (2) man performance will be employed

to carry out corrective maintenance activit.ies to restore hardware capability

when it is lost; and (3_ man performance will be employed to carry out preven-

tive maintenance to preclude hardware failure.

The need for care in the process of allocating maintenance technician

functions to man is most stringent in the case of the local segment. Weight,

power, and volume limitations, and the separation of the local segment from

logistic sources and from second- and third-order additive backup place severe

demands upon the designer, who must employ maintenance technician perfor-

mance within severe limitations for the achievement of very high levels of

reliability. It may be said overall that the success of the designer in this

regard may be measured by determining whether or not he achieves target

system probability-of-success goals.

Relationship of the Group to

the Development Cycle Model

The group of activities under discussion in this chapter includes two ac-

tivities of Function E; E-5 which produces an identification of the remote sys-

tem maintenance technician performance required on prime hardware, and

activity E-9 whose output contains similar information for the local segment.
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The group also includes two activities in Function F. The first is activity F-7,
whose output is an identification of maintenance technician performance on the
Safety and Support System and maintenance technician performance necessary
for maintaining remote maintenance equipment. The second is activity F-i0,
which produces a recommendation for the use of maintenance technician per-
formance to maintain the Human Support System and to maintain maintenance
equipment in the local segment. Taken together, these four activities plus D-4
and D-7 identify v_-rtual!y all of the functions to be allocated to man in the local

1
and remote segments.

In the case of activities E-5 and E-7, which are concerned with the remote

segment, limitations on the types and number of personnel that may be used
are normally not severe. Allocations can be made on the basis of the best use
of man. In the case of activities E-9 and F-10, however, allocations of main-
tenance performance will have to be made within the limits of the crew size

established in Function D. Therefore, in designing for the local segment,
deliberate care must be exercised to consider all of the other activities which

may demand crew time, and calculation must be made to show that recom-

mended allocations of maintenance technician performance do not carry with
them attendant violations of limitations on weight, power, and volume.

It can be seen, then, that activities D-4 and D-7 establish the framework

within which the activities in this group must be carried out and that the
limitation established in the case of the local segment may be quite severe.
Each of these four activities is carried out in immediate response to a require-

ment statement from a personnel products technical management activity, and
the output of each is received by such an activity. Thus, for example, activity
E-9 is initiated by a requirement statement from activity E-4 identifying the
weight, power, and volume budget for activity E-9, and allocating the propor-
tion of personnel resources which may be given to maintenance technician

performance. The output of activity E-9, identification of functions in the

1
Other activities which identify functions to be allocated to crew members

include those concerned with the maintenance of operator performance, the
maintenance of maintenance technician performance, operation of the
personnel support systems, and use of job aids.
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additive loops on prime hardware to be implemented by maintenance technician

performance, is received by activity E-14. In E-14, the recommended use of

maintenance technician performance is integrated into the personnel products

package on the basis of the supporting data for the recommendations which are

also provided by activity E-9. It can be seen from consideration of the sym-

bolic model that activities E-5, F-7, and F-10 are similarly bounded.

The recommended allocations of maintenance performance on prime hard-

ware are stabilized in the output of Function E, and the recommended use of

maintenance technician performance to maintain maintenance equipment and to

maintain the personnel support systems is stabilized in the output of Function

F. These data find their principal employment in activities G-5 and G-6 where

the jobs for each crew member are finally stabilized. Thus, these data which

identify maintenance technician performances to be allocated to man become

the basis for job makeup and, in turn, bases for identifying requirements for

job aids, training, and selection. Finally, the data are employed as a basis

for evaluating the crew package in Function H. Thus, in evaluating the crew

packages, a demonstration of capability to carry out required maintenance

technician performances is necessary.

Resources Needed

The group of personnel who will be required to work on tasks related to

the identification of maintenance technician functions begins to form early in

system development. The development cycle personnel who are concerned

with the prediction of likely maintenance technician performance in D-4 and

D-7 may be thought of as forming the core of the group of personnel who carry

out the work in E-5, E-9 and F-7, F-10. In activities D-4 and D-7, where

operator performance allocations are recommended, this core group must be

capable of assisting in providing data which show that the maintenance techni-

cian functions which will later be required can be implemented within the man-

hours remaining to the crew after their prime functions have been accomplished.

When it is time to identify the prime hardware maintenance functions in E-9,

this core group may form the nucleus of the personnel to implement this task

for they will have considerable relevant experience.
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Whenever a group of development cycle personnel are involved with
identifying maintenance technician functions, there are certain skills which

they must have. For example, given the design of a piece of hardware, they
must have the capability for deducing the state-of-the-art maintenance strat-

egies which could be used to achieve the desired reliability, and they must be
able to identify the maintenance technician functions which such strategies
imply. In addition, when a set of maintenance technician functions for that

piece of hardware has been identified, they must have the capability for accu-
rately estimating the likelihood that these functions can be implemented, and
the cost of training people to implement them. Furthermore, they must have

the capability for deducing the weight, power, and volume implications which
the means for implementing identified maintenance technician functions hold.

The equipment needs of this kind of development cycle personnel may
simply be desk space and a good library. Onthe other hand, since the litera-

ture on the identification of maintenance technician functions is by no means
complete, and since in a complex and expensive aerospace system this identi-
fication can be critical, there may be a need for exploratory design and fabri-
cation of equipment to find out on the spot what the various implications of the
development decision are with regard to the identification of these functions.
It is likely also that the testing of maintenance strategies will involve use of
data-processing equipment.

Identification of Functions in Additive Loops

on Prime Hardware to be Implemented by
Maintenance Technician Performance

Activity E-5 (Remote)

The output of this activity is one of the bases for achieving a stabilized

means selection for the prime system and a stabilized function design of the
additive set in the output of Function E. To serve this purpose, it must in-
clude identification of the functions in the additive loops for prime hardware

that should be implemented by maintenance technician performance in the
remote segment. It should also provide supporting data germane to the recom-
mendation which can be employed as a basis for modifying the recommendation,
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or for demonstrating that acceptance will not lead to future problems in the

design and fabrication of the system.

The input to E-5 will be a requirement statement from activity E-3

identifying any constraints within which maintenance technician performance
allocation must be made, and identifying the manner in which activity E-5 will
be evaluated. The essence of evaluation will be a demonstration that every

allocated maintenance technician performance contributes to overall system
probability of success, that the probability-of-success goals are achieved, and
that no more desirable solutions can easily be found.

Activity E-9 (Local)

The output of this activity is similar in content to the output of activity
E-5. The output of activity E-9 relates to the local segment, however, and
must take into account constraints of weight, power, volume, and crew size.
Thus, the recommendations with respect to allocation of maintenance techni-
cian performance must fall within crew size limits, and the supporting data
must show that the use of crew time is compatible with other needs for crew
time. The supporting data must also show that implications of the recommen-

dations upon weight, power, and volume use are justifiable. Data should be
presented to enable any adjustments in recommendations that might be required
at the personnel products package level, at the local segment level, or at the

system level.

The initiating input derives from activity E-4. It is similar to the input
to activity E-5 except that it includes limitations with respect to weight, power,
volume, and crew size. The evaluation of activity E-9 (specified in its input)

will therefore call out the criteria by which the use of weight, power, volume,
and crew size will be evaluated.
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Recommendation of Maintenance Technician Performance

for the Maintenance of Maintenance Equipment and

the Safety and Support System

Activity F-7 (Remote)

The output of this activity is an identification of all of the maintenance

technician performance allocations recommended for the remote segment, and

recommendations with respect to the technician performance required for the

maintenance of the Safety and Support System. Inasmuch as maintenance tech-

nician performance in first-order additive loops will have been identified in

activity E-5, what is added in activity E-7 will be second-, third-, and lower-

orders of additive performance to be assigned to man. Supporting data which

demonstrate that the recommendations are consistent with the achievement of

a satisfactory system solution must also be provided.

The input derives from activity F-3, a personnel products technical

management activity. The input will be in the nature of an order to determine

maintenance technician performance allocations. First-order maintenance

technician performances will be identified and the manner in which activity

F-7 will be evaluated will be stated.

Recommendation of Maintenance Technician Performance

for the Maintenance of Maintenance Equipment and

the Human Support System

Activity F-10 (Local)

Performance of this activity must be within constraints of weight, power,

volume, and crew size. The output will contain the same type of information

as that required for activity F-7, but the supporting data must demonstrate

that justifiable use of weight, power, volume, and crew time has been recom-

mended.

The input derives from activity F-4. This input is analogous to the input

to activity F-7. In addition, however, it identifies the limitations on the

personnel products package for the local segment.
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Discussion

Within this activity group, activities E-5 and E-9 form a subset that is

distinct from the subset composed of F-7 and F-10. The activities in Function

E are oriented toward identifying the crew performances required to implement

additive loops on prime system hardware. The objective of the activities in

Function F are not quite so clear cut. Basically, what is required of F-7 and

F-10 is that they identify all of the maintenance technician performance of

crew members not previously identified. Taken together, then, the outputs of

E-9 and E-5 plus the outputs of F-7 and F-10 identify all maintenance techni-

cian functions. We will discuss activities E-5 and E-9 first.

The performance of activity E-5 requires close interaction with the parallel

hardware-oriented activities. Activity E-5 must not only interact with those

activities concerned with identifying hardware means for the remote segment;

it must also interact with the activities concerned with identifying means and

additive loops for the local segment. Activity E-5 falls in the chain of activities

that is concerned with the remote segment. It becomes involved with the local

segment simply because some of the additive loops on prime local hardware

will be implemented when the remote and local segments are coupled, and at

that time it is most likely to be the remote crew that will carry out the mainte-

nance actions on the local segment rather than the local crew. In general, it

can be predicted that it will be advantageous to assign maintenance functions

to the local crew only after separation of the local and remote segments.

In Function E, work in the hardware-related activities will be focused

upon achieving a joint resolution of the functional design of the additive loops

and the identification of the prime hardware with which the additive loops will

be associated. The joint determination of prime means and functional designs

for additive loops permits trade-offs to be made such that the prime means

plus additive loop combination will be the best as a combination for each func-

tion; it will preclude the selection of means which give rise to unduly difficult

maintenance problems.

In order to forestall the belated discovery of difficult maintenance prob-

lems after a firm assignment of prime means, it will be necessary to consider
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the functional design and the possible means designs for additive loops for

alternative candidate prime means for each prime function. The functional

design of additive loops does not necessarily require the consideration of per-

sonnel products problems; however, the selection of additive loops which can

be implemented within the !i_mits of freedom given to a designer can be accom-

plished with assurance only when there is a thorough investigation of the im-

plications of each suggested functional design. Therefore, the development of

recommendations with respect to the additive loop functions that might be allo-

cated to crew members for performance should be carried out jointly with the

selection of prime hardware means; it should not be done after the fact of

means selection.

In activity E-5, the identification of functions to be implemented by main-

tenance technician performance can usually be carried out without any severe

limitation on the numbers of personnel generated as a consequence. In activ-

ity E-9, such is not the case. In the output of Function D, the crew size for

the local segment is stabilized, and the selection of functions to be allocated

to crew members must be thoroughly justified as an optimal use of available

crew time. Further, there will be a weight, power, and volume budget for

the local segment, and it will be necessary in activity E- 9 to study thoroughly

the consequences of recommendations with respect to maintenance technician

performance. Study must show that weight, power, and volume problems are

not engendered as second- and third-order consequences of the assignment of

maintenance technician performances.

Basically, what is required in the output of Function E is that the prime

means for the system be stabilized and that a functional design of the additive

set for each segment be so well justified by a study of ways in which it can be

implemented, that the functional design can be stabilized with confidence.

Data with respect to maintenance technician performance in the additive sets

are required as one basis for achieving the needed confidence. The overall

criterion in selecting each means plus additive loop combination will be to

provide for satisfying the target probability of output of the functions imple-

mented by the means. Every assignment of maintenance technician performance
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will therefore be justified in terms of its contribution to reliability of the

prime means plus additive loop combination with which it is associated.

Activity F-7 is essentially a "clean-up" activity with respect to mainte-
nance technician performance in the remote segment. Function F is designed
to achieve the identification of all maintenance means at all levels in one over-
all exercise. Means in first-order additive loops will be selected simultaneous-

ly with the selection of means for all lower orders of additive loops. The basic
decision with respect to maintenance means (hardware} to be selected will be
made by the hardware package activities. In each case, the criteria for selec-
tion will be probability-of-success criteria, and no second- and third-order
additive loops will be provisioned except where necessary to achieve target
output probabilities. As each necessary functional design is considered, it

should be evaluated in activity F-7 for the purpose of determining which
component functions should be allocated to maintenance technician performance.
In general, the remote segment will not be severely limited in crew size; cost
and human capability will therefore be prime factors in determining what
functions should be implemented by means of maintenance technician perform-
ance.

In the model, activity F-7 includes the determination of the maintenance
performances in the Safety and Support System to be allocated to man. The
joint consideration of all allocations at once is to enable preliminary considera-
tion of job structures in deciding what functions to assign to man. It can be
expected that some of the basic capabilities required for the maintenance of the
Safety and Support System will be the same as those required for other hard-
ware.

In activity F-I0, designers will not have the freedom to call upon crew

members to perform maintenance tasks without regard for the size of the
crew that is generated. Rather, all recommendations must be justified as
being a good use of available crew time. Full study of the implications of

maintenance decisions with respect to logistics and consequent personnel
products problems is required in F-10. F-10 is also charged with the task of
determining what maintenance technician performances will be required to
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provide for reliable Human Support System performance. Because of weight,
power, and volume limits, it will be necessary to look ahead and predict what
job aids and material for maintaining maintenance technician performance

will be needed as a consequence of assigning responsibility for maintenance to
local crew members.
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VII. PROVISION FOR OBTAINING RELIABLE IMPLEMENTATION

OF FUNCTIONS ALLOCATED TO MAN

(ADDITIVE LOOPS ON HUMAN PERFORMANCE)

Activity Group Requirements and

General Considerations

The previous chapter is concerned with determining what man must do in

an aerospace system to augment the inherent reliability of hardware means so

that the probability of output requirements placed on component functions of

the system can be met. In this chapter, we will be concerned not with the

maintenance of hardware, but with the maintenance of the capability of crew

members to perform reliably the tasks assigned to them. The coverage in

this chapter is not precisely analogous to that of the previous chapter, be-

cause we are here concerned with the complete additive loop by which proba-

bility of output requirements are met for functions assigned to man for im-

plementation. Thus, we are here concerned with what man must do to main-

tain man performance and with the special equipment which must be developed

and delivered for this same purpose.

In this chapter, we will be concerned with additive loops which must be

incorporated into the functional design of the system to provide backup for

operator performance, and with additive loops which are included to provide

backup for maintenance technician performance. Inasmuch as we are con-

cerned with additive loops, it will be clear that the single criterion for making

provision for the maintenance cf human performance capability will be over-

all system probability of success.

A probability equation which describes the manner in which the component

functions of a system generate the overall probability of success of the system

does not discriminate between functions which are implemented by man and

functions which are implemented by hardware. Failure to meet target proba-

bility-of-output goals in the case of man-implemented functions has the same

effect on overall probability of system success as it would if the functions were

implemented by hardware. In this chapter, we recognize that the laws of
!
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chance are insensible to means and we will attempt to give the same serious

consideration to providing for additive loops to support human performance
as we would give to the task of providing additive loops to back up hardware
performance capability.

As in the case of hardware, human performance may be backed up in

three different ways to provide for the satisfaction of target probability-of-
output goals. Human performance may be used in a standby redundant man-
ner to be slipped into place when other human performance capability fails;
hardware backup may be employed in precisely the same manner to back up

operator performance. Human performance may also be sustained by preven-
tive maintenance techniques. And finally, corrective maintenance techniques

may be employed to back up operator and maintenance technician performance
capability. What is required in a system development cycle is that objective
attention be given to the task of provisioning a subset of the additive set which
is focused upon sustaining reliable operator and maintenance technician per-
formance capability. The implementation of this subset of the additive set in
general requires not only the training of crew members to carry out mainte-
nance actions on themselves, but also the fabrication and delivery of "hard-
ware" which can be used directly to back up human performance and which

is needed to assist in carrying out corrective and preventive maintenance ac-
tions such as simulators to enable practice on the job.

Relationship of the Group to the Development Cycle Model

There are basically two lines of development for the materials to main-
tain operator and maintenance performances. One of these is for the local
segment and one is for the remote segment. While the end products of these

two lines of development are not physically the same, the sequence of events
which leads up to their creation during system development is essentially the
same. For this reason, we will discuss only the local segment line of devel-
opment, but those idiosyncrasies associated with the remote segment for any
one point in the development sequence will be noted and explained as they arise.
The activity group for the local segment consists of four activities, identified
on the system development model as activities E-10, F-8, G-14, and H-11.
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(Those parallel activities concerned with the remote segment are E-6, F-5,
G-9, and H-9.)

In addition to the above-named activities which are directly involved there

are others which indirectly relate to perforn]ance maintenance means (PMM}

production. In the model, these other activities are primarily concerned

with outputs which are no___tPMM outputs, as such. PMM development begins

during activity D-7, where it must be shown that the recommended allocation

of operator functions will not create design problems when PMM activities

are reached. In order to make this kind of demonstration, there must be a

fairly detailed prediction of the types of PMM that will be required to complete

system design and fabrication. Prediction must be detailed enough, for ex-

ample, to permit an estimate of weight, power, and volume allocations for the

local segment which should be made to allow for the PMM part of the person-

nel products package. (Such limitations do not usually apply to the remote

segment. ) Consideration of PMM in activities D-7 (and D-4} thus encompasses

all of the activities in the activity group. However, it does this in a predic-

tive and representative manner on the basis of less information and in less

time than would be available for the accomplishment of the activities them-

selves.

In Function E, more detailed anticipatory study of PMM requirements to

support maintenance technician performance would take place (activity E-9).

In each case, the PMM planning that is done is for the purpose of generating

confidence that it is safe to proceed with design. The planning is no___tfor the

purpose of constraining the decisions that will be made in subsequent activ-

ities. Activity F-8 follows E-9 and is concerned with PMM for the perfor-

mances called out in E-9. F-8 also sets forth representative plans for hand-

ling the PMM problems engendered by second- and third-order maintenance

considerations and demonstrates that the problems can be solved within con-

straints. Activity F-8 thus produces means design of PMM for both operator

and maintenance performance.

Activity H-11 delivers PMM which, in the real world of system develop-

ment, will be required to undergo several adjustments before they are finally
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delivered and installed as part of the operational system. The key activities
in which adjustments may take place are activity H-14, in which the trained
crew and PMM are integrated into an operational package, and activities H-16,

H-18, H-19, and H-20 which are concerned in sequence with the assembly,
installation, and test, first of the remote segment and then of the total system.

During Function H on the development cycle model, it may be necessary
to retrofit some of the materials for maintaining operator and maintenance

performance which are produced as the output of activity H-11. Retrofit may

come about as a result of the testing which will occur during activities H-14

and H-16 wherein the personnel products are integrated and tested. This could

at worst entail an analysis, redesign, and refabrication of those elements of

the PMM which do not support man's reliability as required in the performance

of selected functions. Since retrofit is costly both in development time and

dollars, it is vital that all possible efforts be made, prior to personnel prod-

ucts package testing, to ensure with high confidence the prediction that the

PMM will satisfactorily pass the tests within tolerance. Such efforts are pro-

vided by the technical management activities that oversee the PMM activities.

Resources Needed

There is no well-organized subdiscipline within human factors or bio-

technology that is concerned specifically with all techniques for maintaining

human performance. There is, however, an evolving concern with the devel-

opment of techniques and data for predicting the reliability with which specific

tasks will be accomplished by human performers. Techniques for evaluating

proposed methods for maintaining human performance are virtually completely

lacking. Nevertheless, what is required to implement the activities in this

group are specialists in the fields of: (1} prediction of the reliability with

which humans will perform specific assigned tasks, (2} specialists with a

broad knowledge of the techniques that may be applied successfully to main-

tain human performance to achieve probability-of-success goals, and (3)

specialists capable of evaluating techniques for maintaining human perfor-

mance.
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Activities E-6 and E-10 require basic data and techniques for estimating

the reliability with which each function assigned to man will be performed by
crew members unsupported by additive loops. In view of the first-order ef-
fects of operator (prime means} failure, good reliability estimates are re-

quired, and where data available in the literature are insufficient, it may be

necessary to provide resources for applied experimentation to develop empir-

ical bases for estimation. In activities F-5 and F-8, there is a similar re-

quirement for the estimation of the reliability with which maintenance tasks

may be expected to be carried out. In general, however, less precise estima-

tions are required than in the case of operator performance. Because activ-

ities F-5 and F-8 require the identification of means by which human perfor-

mance maintenance will be implemented, specialists with knowledge of what

is available in the state of the art and of what is effective are required.

Activities G-9 and G-15 require that fabrication models for materials for

use on the job be prepared. Assuming that means are properly called out in

the output of F-5 and F-8, these activities require common engineering skills

supported by knowledge of effects on human behavior of specific materials con-

figurations.

It is activities H-9 and H-11 which create the most severe resources prob-

lem. The matter of fabricating materials in response to the models prepared

in Function G does not cause the difficulty. Rather, it is the requirement that

supporting data be provided to show that the fabricated materials do indeed

provide for the added increment of reliability needed to meet target probabil-

ity-of-output objectives. What is required to provide the supporting data are

techniques for determining, within reasonable cost and time limits, whether

or not the delivered materials will be effective over long periods of time in

use on the job. Especially in the case of operator performance maintenance,

reliability requirements may be very high and good estimates of the effective-

ness of materials for maintaining operator performance may be very impor-

tant indeed. Recognizing that the technology is deficient, the best that can be

said here is that care must be taken to select the best qualified technologists

available, and that provision will probably have to be made for equipment and

test subjects to enable validation of the estimated effects of maintenance needs

for human performance.
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Identification of Additive Loops on Operator Performances

Activity E-6 (Remote)

The output of this activity identifies all of the additive provisions that are

recommended for the purpose of ensuring that probability-of-output require-

ments for functions to be implemented by remote operator performance will

be satisfied. Functional design of the additive loops on operator performance

will be stabilized in the output of Function F,. Therefore, supporting data will

accompany recommendations for such additive loops in order to demonstrate

that the functional designs can be implemented without forcing the system de-

sign out of its target cost, quality position.

The manner in which the supporting data are to be presented will be iden-

tified in the input to activity E-6. The input derives from E-3, a technical

management activity.

Activity E- 10 (Local)

The inputs and outputs of this activity are similar to those for E-6. E-10,

however, is concerned with additive functions to support operator performance

in the local segment. Therefore, its input will identify limitations, and the

supporting data in the output must show that weight, power, volume, and crew

size constraints are not violated by the recommendations.

Identification of Additive Loops on Maintenance

Technician Performance

Activity F-5 (Remote)

This activity is concerned with the reliability of maintenance technician

performance in the remote segment. It is thus concerned with second- and

third-order additive loops. (It is unlikely that lower orders of additive loops

will be employed for the purpose of providing for the reliability of maintenance

technician performance. ) The output of this activity must identify the func-

tional design of additive loops for maintaining maintenance technician perfor-

mance and the means for implementing those additive loops. Means may
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include requirements for personnel performance and hardware means. The

input to activity F-5 derives from F-3, a technical management activity. That
input will identify all previously stabilized relevant design decisions and will

call out the manner in which the output of F-5 is to be evaluated.

Activity F-8 (Local)

Like the output of activity F-5, the output of F-8 must include functional

design and means identification. The functional designs will be those required

to provide for the maintenance of maintenance technician performance in the

local segment. The output will include identified means for implementing all

additive loops on human performance and supporting data as required in the

order to F-8 from F-4, the technical management activity which precedes it.

In general, F-5 and F-8 are similar. However, F-8 must respond within

weight, power, volume, and crew size constraints identified in its input.

Preparation of Fabrication Models for Materials

to Maintain Human Performance

Activity G-9 (Remote)

The output of this activity includes all of the fabrication models required

for the construction of materials for use on the job to _m____intain human perfor-

mance in the remote segment. It thus encompasses materials necessary to

maintain operator performance and those necessary to maintain maintenance

technician performance. The input to this activity derives from the crew pack-

age technical management activity, G-5, which precedes it. That input will

call out the manner in which the required fabrication models will be evaluated.

Activity G-14 (Local)

This activity is to the local segment what G-9 is to the remote segment.

Its output is a set of fabrication models for material to maintain human per-

formance in the local segment. Its inputs and outputs differ from those of

G-9 in that G-14 must be carried out within the constraints imposed on the

local segment.
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Fabrication of Materials for

Maintaining Human Performance

Activity H-9 (Remote)

The output of this activity is an output of the development cycle; it is the

fabricated materials necessary for maintaining operator and maintenance

technician performance in the remote segment. The output must also include

supporting data developed by evaluation of the materials to demonstrate that

the requirements for them are satisfied. These data must thus demonstrate

that the materials are capable of providing the increments of reliability neces-

sary for the achievement of overall probability of success goals for functions

assigned to operator and maintenance technician performance.

The input from this activity derives from activity H-5, a crew package

technical management activity. The input is essentially an identification of

the test by which the materials to be produced in H-9 will be evaluated. The

input thus provides the basis for generating the supporting data needed in the

output.

Activity H- 11 (Local)

This activity is in the sequence of activities concerned with fabrication

of the local segment. It is similar in its role to the role of H-9. The outputs

differ principally in that the supporting data must show that evaluation has been

carried out employing weight, power, volume, and crew size constraints as

criteria. The constraints are identified in the input which derives from H-6,

a crew package technical monitoring activity.

Discussion

The basic objective of Function E is to develop a stabilized functional

design of the additive set jointly with a selection of stabilized means for the

prime system. Activities E-6 and E-10 are therefore concerned primarily

with identifying requirements for additive loops on operator performance so

that decisions to implement prime functions by means of operator performance
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may be stabilized. Investigation of methods by which to implement additive
loops on operator performance is necessary primarily to develop confidence
that problems will not be encountered in designing and fabricating such means.
Given assurance that the needed additive loops can be implemented within lim-
its on the local and remote segments, it will be possible simultaneously to

stabilize with confidence operator performance allocation and functional de-
sign of additive loops on operator performance.

The achievement of these objectives requires that the inputs to E-6 and
E-10 identify the probability-of-output goals for each prime function. Within
these activities it will then be necessary to estimate the reliability with which

operator performance can be expected to implement each of the prime func-
tions which might be allocated to performance by crew members. Whenever
the estimates of reliability are less than the required probability of output,
and whenever the estimates of reliability are based upon suspect data, addi-
tional work is necessary. Better data must be developed where needed to

determine if there is a true gap between reliability and required probability
of output, until finally there is identified a list of all the operator performances
with which such gaps are associated. For each such operator performance,

it will next be necessary functionally to identify an additive loop that will make
up for the gap in reliability and then to determine means by which the additive
loops may be implemented. In the case of activity E-10, means must be found
within the weight, power, and volume budgets. Further, in activity E-10,

care must be taken not to impose time requirements for implementation of
maintenance functions on crew members such that there is interference with

more important crew tasks. Wherever satisfactory means can be identified

for implementing necessary additive loops on operator performance, imple-
mentation of the subject function by means of operator performance may seri-
ously be considered. On the other hand, if means cannot be found within lim-
itations that will close the reliability gap, then there is a clear implication

that new means must be sought for implementing the prime function. Respon-
sibility for such reassignment must be made at the level of technical manage-
ment for segment development; it cannot be made within the personnel prod-
ucts activities.
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The output of Function F is a stabilized means design for the additive set.
Inasmuch as all provisions for maintaining operator and maintenance techni-
cian performance fall within the additive set, such means must be identified
in activities F-5 and F-8. It is thereforerequired in F-5 and F-8 that esti-
mates be made of the reliability with which each maintenance technician
performance will be carried out. As in Function E, differences between re-
quirements for probability-of-output and reliability estimates will generate

requirements for maintenance and maintenance technician performance. In

F-5 and F-8, design will be carried all the way through to the recommenda-

tion of means by which additive loops on human performance are to be imple-

mented.

In developing estimates of the reliability with which each operator perfor-

mance and each maintenance technician performance may be carried out, it

will be necessary to make assumptions about the environmental conditions that

will obtain in the operational situation. Therefore, data germane to those con-

ditions must be provided as input data. Where the conditions can be expected

to contribute to degradation of reliability, it will be necessary to call for cor-

rection of those conditions and thus to provide inputs to the development of

the personnel support systems. It is the purpose of these support systems to

provide environmental conditions consistent with the assumptions and demands

of the activities concerned with the reliability with which tasks assigned to

crew members will be carried out.

The means identified for implementing additive loops on human perfor-

mance will typically include functions to be carried out by means of crew

member performance and functions to be carried out by means of hardware.

Where crew member performance is involved in additive loops, frequently it

will be necessary to supplement the crew member performance with "hard-

ware. " Such supplementary hardware may include true hardware, such as

simulators, but it may also include printed test materials, printed study ma-

terials, and other quasi-hardware.

It is in Function G that fabrication models for materials to maintain

human performance are prepared. In Function F, there is an identification
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of the materials needed, but the detail of identification does not include the

detail required to enable fabrication. Fabrication of the needed materials
may encompass training for are-,- member implementation, and the fabrica-

tion of printed material and hardware. Therefore, in the case of the remote
segment, activity G-9 may be expected to interact with activity G-10 which

is concerned with preparing for the training of the crew. Furthermore, job
aids may be employed to support tasks involved in maintaining human perfor-
mance. If they are required, there must be interaction between activities
G-8 and G-9 so that G-8 will produce the needed job aids.

In the preparation of means for maintaining human performance for the
local segment, interaction is required between G-14 and G-15 to provide for
job aids, and between G-14 and G-13 to provide for training crew members

to implement their own additive loops on human performance. In the local
segment, however, any materials required for the purpose of maintaining hu-
man performance must be selected carefully to fall within weight, power, and
volume limits, and must be justified as a gooduse of weight, power, and vol-

ume. Yet further, requirements for crew members to implement monitoring
and corrective and preventive activities for the purpose of maintaining human
performance must be shown to fall within the time available for crew activities

without interfering with other crew activities that have greater impact on sys-
tem_quality.

It is in Function H that the materials necessary for maintaining human

performance are fabricated. These materials are delivered as end products

of the development cycle and are installed as part of the operational system.
They are not materials to be used within the course of the development cycle,

except that it may be necessary to familiarize crew members with their use
in H-8 and H-10, the activities concerned with crew training. Ordinarily,
the fabrication of the simulators and test devices, and exercises required to

provide for the maintenance of operator and maintenance technician perfor-
mance will be relatively straightforward. As mentioned earlier, however,
activities H-9 and H-11 must also develop data to demonstrate that the mate-

rials which they fabricate meet requirements for those materials. Essentially,
those requirements v-ill be stated in terrns of increments of reliability to be
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added to the inherent reliability with which each operator and maintenance

technician performance is carried out. It is, therefore, incumbent upon
activities H-9 and H-11 to demonstrate that the delivered materials do indeed

add the needed increments of reliability when they are employed in the pre-
scribed manner by the selected and trained crew members. Frequently, the
increment in reliability to be addedmay be rather small -- especially in the
case of operator performance, where high reliabilities are required. When
the increment that is needed is small, and when its effect is to improve an
inherent reliability that is already high, then the problems of demonstrating
that the desired effect is required are severe indeed. Techniques for demon-

strating within reasonable cost and time that the reliability with which a man
performs a given task has been improved from, say, . 95 to . 99, have simply
not been well developed. Nevertheless, the effect of failure to provide for
the reliable implementation of system functions allocated to man has the same
effect on overall probability of system success as failure to implement func-
tions allocated to hardware with hardware of the required reliability. There-

fore, attention to the task of demonstrating the effectiveness of additive loops
on human performance cannot, in good conscience, be set aside.
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VIII. DESIGN OF INTERFACES AND WORKSPACE
TO PROVIDE FOR RELIABLE INTEGRATION

OF OPERATOR PERFORMANCE

Activity Group Requirements
and General Considerations

Whenever a system uses men to implement some functions and machines
to implement others, there will be situations which demand interaction between
man and machine. Thus, for example, when there is a flow of data from a

man-implemented function to a hardware-implemented function, there will be

a requirement for the output of the man to be received as an input by the hard-
ware. Data flow requirements can also call for data to pass from machine to
man. Unless deliberate attention is given to the proper articulation of means
at such control and display interfaces, it is simply unlikely that every function
output will be precisely the input that is required by the means which imple-
ments the follow-on function. Thus, unless someone worries about the prob-
lem of providing for "fit" between all system means to assure proper functional
interfacing, it is simply unlikely that articulation will be perfect at every inter-
face. Where articulation is imperfect and data fail to pass from one means to

the next (that is, from one function to the next), then overall system probability
of success suffers, in this chapter, we are concerned with the interfaces be-
tween operator performances and hardware. We include those interfaces

which require that information pass from hardware to man with those interfaces

which require that information pass from man to hardware. We will frequently
speak about the former as a display interface and of the latter as a control

interface. We are also concerned with man-man interfaces. Specifically, we
must provide for activities in the system development process that will give
attention to ensuring that there is not a degradation of system reliability which
can be attributed to poor interfaces associated with greater performance.
Chapter X deals with the interfaces between maintenance technician perfor-
mance and hardware.

In general, to provide for proper fit at man-machine interfaces, one or

both of two courses of action may be elected: (1) the capability of man to
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receive information or to transmit it may be changed by training, and (2) the
form of the output of a machine may be modified by a special attachment so that

man may receive it, or the kind of input that can be received by a machine may
be modified by an input attachment to permit control behaviors that are within
the capability of man.

Interface devices may be single-purpose or multipurpose, and they may
be fixed or movable. Movable multipurpose devices are sometimes called tools.

Design, for the purpose of achieving proper articulation at man-machine inter-
faces, is frequently called human engineering. This chapter is not "all about"
human engineering, however, for the term commonly encompasses other devel-
opment cycle activities which are outside of the scope of this chapter. It is for
this reason that the chapter title does not employ the term human engineering.

Not only is this chapter concerned with individual interfaces between man
and machine; it is also concerned with the set of all interfaces between a man

who carries out assigned operator performances and the prime hardware with
which he is involved. Thus, this chapter is concerned with workspace design
as well as with design for man-machine and man-man interfaces taken separ-
rately.

Relationship of Activity Group to
Development Cycle Model

The objective of this section is to identify, by reference to the develop-
ment cycle model, the activities which comprise the activity group under con-
sideration, and how they "fit" into the model, and the related efforts throughout

the model including the true beginning and end of concern for interface prob-
lems.

There are two activities which form the activity group. These are E-8

(for the remote segment) and E-11 (for the local segment). The outputs of each
of these activities are recommendations that are ultimately reflected in the

design of the prime system means and in operator training. A data package is
also delivered as an end product of the activity group. This package should
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contain information confirming that there will be no loss of system reliability
due to failure of articulation at man-machine interfaces, and at man-man inter-
faces.

Activities E-3 and E-4 for Lhe remotc and local segments, respectively,
provide to the activity group detailed descriptions of the operator performances
to be carried out in the operational system, including reliability requirements
and measures of outputs. A second major input derives from parallel prime
system means design activities. E-7 and E-11 personnel should work with the

prime system means designers to identLfy interface problems as they are gen-
erated.

The true origin of concern with man-machine interface problems in
Phase II lies in activities D-4 and D-7. In these activities, decisions are made

with respect to the prime system design, and recommendations are made with

respect to which functions in the prime design man should perform. To obtain
a prime system design that may be stabilized with confidence, there must be a

thorough explanation of the personnel products problems that may be engen-
dered by selection of the prime system design. Exploration must include at-
tempts to identify likely man-machine and man-man interface problems and
attempts to identify methods whereby these problems may be solved. The data
generated in this "look ahead" will not be binding upon activities E-7 and E-11
as design guidance, but they will provide raw material that may be of use in
carrying out these activities.

Inasmuch as human engineering decisions frequently require that assump-
tions be made about the physical and mental health and stature, age, and other
attributes of crew members, it will be necessary for activities E-3 and E-4 to
provide working assumptions.

Implementation of the design recommendations produced by E-7 and E-11
will occur in Function G where fabrication models for hardware will reflect

interface solutions which require hardware adjustments. Interface solutions

involving training will be implemented in G-10, and in G-14, where training
materials are prepared.
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Interim evaluation of proposed solutions for interface problems will be
carried out in Function E at the personnel products level, at the segment level,

• and at the system level (activities E-13 through E-17). Final evaluation, and
therefore the final opportunity for retrofit before delivery of the complete
operational system, will take place in Function H, first at the crew package
level, then successively at the personnel products level, the segment level,
and the system level (activities H-13 through H-20). The objective of the eval-
uations in Function H will be to demonstrate that there is no loss of reliability
which can be attributed to failure of articulation at man-machine and at man-
man interfaces. Thus, the overall criterion will be a reliability criterion.

Resources Needed

Although the activities described in this chapter do not encompass all of

human engineering, nevertheless, basically they require the application of the
human engineering discipline. This disicipline is so well documented that it
would be quite inappropriate to attempt here to characterize it in a few words.
However, to provide guidance for estimating the nature and size of the commit-

ment required to carry out the activities in this group, we will briefly call
attention to the major characteristics of the resources needed.

Both of the activities in this group can be carried out adequately by human

engineers trained in control and display design and workspace layout. Concern
for maintenance technician interfaces is not included in these activities, there-

fore the human engineering skills associated with "maintainability" are not re-
quired. The human engineers assigned to carry out these activities should be

supported by a comprehensive human engineering data pool (access to an appro-
priate library might serve this purpose). To provide a more certain basis for
the comprehensive identification of all interface problems and to provide a
vehicle for the evaluation of proposed solutions to identify interface design

problems, it will be necessary to build mock-ups and to test human subjects.
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Design of Operator Interfaces and Workspace
Activity E-7 {Remote)

The output of this activity is a set of recommendations for the solution of

man-machine interface problems. The output will include, for example, sug-
gested designs for interface hardware, suggested designs for workspace layout,
and recommendations with respect to operator training for the purpose of solv-
ing interface problems. Recommendations will be for operator performance
interfaces in the remote segment.

The input to activity E-7 derives from E-3, a personnel products technical
management activity. The input identifies the manner in which the solutions

recommended in the output of E-7 will be evaluated, and will thus provide a
basis for the development of the supporting data required in the output of E-7,
as in the case of every other design activity.

Activity E- 11 (Local)

The output of this activity is concerned with operator interfaces in the
local segment. It will identify the manner in which crew performance of oper-
ator functions is to be articulated with the hardware in the local segment.
Solutions may include recommcndations for special hardware interface devices,

recommendations for special operator training, and workspace layouts.

The input to E-11 derives from E-4. The input is in the form of a require-
ment statement which identifies the procedure for testing the output of E-1 1.

The output of E-11 will therefore include supporting data developed by testing
to demonstrate that the recommendations are satisfactory. Inasmuch as E-11
is concerned with the local segment, the supporting data must show that rec-
ommendations fall within constraints identified in the input.
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Dis cussion

The outputs required of either activity in this group may be encompassed

by four classifications: (I) recommendations for hardware design actions that

will achieve the desired articulation at specific individual man-machine inter-

faces; (2) recommendations that specific capabilities be taught crew members

in order to achieve the required articulation at man-machine and at man-man

interfaces; (3) recommendations with respect to the overall layout of the envi-

ronment in which operator performance is carried out by a crew member in

order that the interface problems associated with all interfaces taken together

may be solved; and (4) data which demonstrate that adoption of the recommenda-

tions will result in system performance to the end that no degradation of reli-

ability can be attributed to failure of functional articulation at man-man and at

man-machine interfaces. It will be a goal of each activity that these outputs

be produced within the resources allocated for the purpose. A typical method

for implementing either of the activities in this group has been chosen for dis-

cussion here as a vehicle for setting forth some of the factors to be considered

in planning for these activities. The method chosen is encompassed by four

major steps. In overview, these steps are as follows: the first step is focused

upon determining what interfaces require attention. In many cases in the nor-

mal course of design, interface problems will be recognized and solved without

specific attention by human engineering personnel. The objective of the second

step is to determine alternative ways in which identified interface problems

may be resolved. Alternative interface "adapter" devices and training solutions

may be recommended. The third step in the method identifies the solutions of

choice. Such solutions must fall within constraints set forth in the "order" or

requirement for the activities. Where solutions cannot be found within weight

constraints, for example, or within the capabilities of the types of personnel

who man the crew, the unsolvable interfaces must be identified to technical

management so that alternative ways of structuring the system may be found.

The selection of solutions must be within an acceptable concept of the work-

space. In the final step, an overall workspace and attendant solutions to indi-

vidual interface problems within the workspace will be prepared. These rec-

ommendations will be the major output of the activity; they will be accompanied
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by data to support the contention that they will solve interface problems within
identified constraints.

The paragraphs below treat each of these four steps within a typical activ-

ity in more detail. The intent here is not to advocate a method, but simply to

use a representative method discussion as a basis for identifying the nature of

the activities in this group.

Stepl

The determination of the specific interfaces requiring human engineering

attention requires that all of the man-machine and man-man interfaces first

be identified. The proper basis for identification is a functional description

of the system which indicates the functions to be implemented by hardware

means and those to be implemented by human means. The functional descrip-

tion of the system required or needed for this purpose must be so detailed that

all interfaces can be identified. If it is not available from the data pool of the

system development cycle, then it may be necessary to prepare it within this

work step. As recommendations for prime hardware are developed in Func-

tion E, it will be possible, by following the data flow, to determine the inter-

faces associated with each hardware package, and to determine the criteria for

proper articulation of man and machine at these interfaces. By the use of the

function description it will be possible to determine when all interfaces of

interest have been comprehended. In many cases, initial hardware selection

plans will create interfaces that are manageable without human engineering

intervention. These may be set aside for reconsideration when workspace lay-

out is considered. The remaining interfaces must be tagged for further action

in work step 2.

In'order to identify interfaces that may give rise to problems, it will be

necessary to appeal to basic data which describe the capabilities of man to

receive data and to transmit -- that is to control. Time must be considered

as a factor in these analyses as well as the nature of the inputs and outputs

from and to man. Specific information about the characteristics of the intended

crew members must also be taken into account jointly with the basic data about
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population characteristics. In these analyses, a discovery of an interface at
which there will be unreliable articulation does not necessarily mean that a

problem has been identified. The determination of whether or not there is a
problem requires consideration of the criteria for assessing the output of the
receiving function and specific requirements for the probability of success of
the functions involved. It can be said that there is a problem only when the

expected reliability of output of the receiving function will be degraded below
that required because of unreliability at the interface in question, or because
of second-order effects on performance which may be attributed to the manner
in which the interface is implemented.

Step 2

To determine alternative ways in which interface problems may be solved

requires a good method of access to the extensive human engineering literature

which identifies solutions that have been developed and used in the past. What

is required inthis work step is to identify sufficient alternatives to provide a

basis for an integrated solution of the set of interface problems associated

with the operator performance of a crew member in the workspace layout to

be considered in the following step. Frequently, the solution to problems of

articulation is found in the use of "adapter" devices which are fastened to prime

system hardware and which transduce prime system hardware outputs to a form

that is reliably employed as an input to" operator performance. Other adapters

accept the kind of control outputs of which man is capable and transduce them

to inputs that prime system hardware can employ. However, the kinds of

solutions available to the human engineer are not exhausted by the extensive

lists of typical adapter devices described in the human engineering literature.

The human engineer may opt to train crew members who will carry out oper-
.

ator performances to employ the outputs of prime hardware without modifica-

tion of these outputs by special devices. Such an option is possible, of course,

only when the prime hardware output can be sensed and sufficiently resolved

by the natural receptors of humans. The augmentation of reception by means

of portable devices, such as portable optical devices, is considered a special

case of the adapter type of solution. The human engineer may also elect to
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employ job aids to assist in the resolution of certain man-machine and man-

man interface problems. Thus, in lieu of training, a faceplate beside a display

may provide all of the guidance that is necessary to enable its reliable use by

crew members.

Step 3

The selection of the methods by which identified it/efface problems will be

solved must include consideration of several intersecting sets of constraints

and limitations. The required reliabilities must be achieved not only when the

solutions are taken separately, but also when they are taken together. Thus,

two solutions which are adequate when separate may cause conflict when they

are used side by side. The set of solutions selected must admit integration

into an overall workspace arrangement which contains all of the interface solu-

tions and provides for the articulation of the crew member with the interfaces

related to his operator performance. Thus, the relationship of the crew mem-

ber to his interfaces as a whole must be considered as well as the interfaces

separately. When considered as a whole, the set of solutions must fitinto the

space available for them without loss of effectiveness. Frequency of use,

time conflicts, as well as position conflicts must be taken into account. The

set of solutions for the local segment must lie within weight, power, and

volume limits set forth in specifications prepared by technical management.

The reliability of adapter devices themselves must be taken into account, and

so must cost. Given this complexity, Step 3 ordinarily will involve many

trade-offs before a satisfactory package of interface solutions can be achieved.

Inasmuch as it may be necessary to stabilize some solutions prior to others,

itmay be necessary sequentially to seek a solution of the total interface pack-

age.

Step 4

In this step, the recommended workspace layout for operator performance

must be described. The description must include specific identification of the

manner in which each individual interface problem must be solved. Recom-

mendations with respect to interface problems to be solved by means of
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training must be detailed, and recommendations for job-aid solutions must

also be prescribed. It must be demonstrated that all man-machine and man-

man interface problems have been considered, and that solutions have been

proposed in every case in which a need was found for intervention. Should it

not be possible to show that all problems have been solved, unsolved problems

should specifically be identified, the reason for failure to solve the problem

should be identified, and recommendations for an approach to solution should

be stated. These recommendations will constitute the principal output of the

activity and will be the basis for integration with other recommendations in

Function E at the personnel products, at the segment, and at the system level.

The output of this final step must also include supporting data. The data

must demonstrate that the solutions are compatible with parallel recommenda-

tions for hardware implementation of system functions, and with recommenda-

tions for implementation of prime function by means of operator performance.

The data must also provide a basis for confidence that acceptance of the rec-

ommendations will result in a system in which no loss of reliability over and

above expected losses will be attributable to failure of articulation at man-man

and man-machine interfaces. Finally, the data must demonstrate that the

recommendations will not lead to second- and third-order problems of system

development later in the development cycle. Any problems which may be en-

gendered by the recommendations must be identified along with proposals for

their solution.
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IX. DEVELOPMENT OF THE PERSONNEL SUPPORT SYSTEMS

Activity Group Requirements

and General Considerations

The reliability with which a man will implement an assigned function will

be affected by the conditions under which he is required to perform. Thus,

reliability may be degraded if environmental conditions are unfavorable. What

is required in the case of man, as in the case of hardware, is provision for

sustaining those environmental conditions necessary for the required reliabil-

ity of performance to be realized in system operation. Here we will call a

system which provides such conditions a personnel support system.

In aerospace systems, personnel support systems are needed: (1) to

sustain personnel psychologically and physiologically so that they may per-

form their assigned functions with the required reliability, and (2) to preserve

the long-term mental and physical health of system personnel within limits

accepted by society. The first need is of primary importance from the point

of view of system objectives, for it relates directly to the probability of mis-

sion success. The second derives from the "adjacent" social system, and is

of secondary importance from the point of view of mission objectives. That

is, the second need exists only when the first exists.

In an aerospace system, there must be a personnel support system for

each segment if both segments are manned. The personnel support system for

the local segment will be referred to here as the Human Suppvrt System.

Roughly speaking, the Human Support System encompasses the concepts of

an environmental control system, a life support system, and all provisions

for habitability. In most systems, reliability of operator and maintenance

technician performance may be said to be the sole objective of the Human

Support System, for the requirements placed upon the system to achieve these

objectives will usually be more stringent than the requirements placed upon

the Human Support System for the purpose of preserving human life and san-

ity. An exception to this general observation is the case in which provision
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must be made to preserve human life after system failure has occurred.

Abort provisions clearly cannot be justified as accounting for system proba-

bility of success.

The personnel support system in the remote segment is referred to here
as the Safety and Support System. As in the case of the Human Support Sys-

tem, a primary objective of the Safety and Support System is to provide for
reliable human performance; thus, it must provide conditions such that no

loss of reliability of human performance can be attributed to improperly con-
trolled external environment. In this sense, the Safety and Support System
encompasses air conditioning, occupational medicine, and occupational psy-
chiatry, for examples. Typically, in the case of an aerospace system, the

Safety and Support System must also provide for an acceptable interface be-
tween the aerospace system and adjacent systems where the safety of person-

nel in adjacent systems is in danger.

The Human Support System may require a significant share of the weight,
power, and volume allocations in the local segment of an aerospace system,
and the need for an HSSis therefore of great importance in determining wheth-

er or not man will be included in the local segment. Because the nature of
these two personnel support systems is so different, they will be discussed
separately in this chapter.

Relationships of the Activity Group to
the Development Cycle Model

In this section attention is focused upon describing the development of
the Human Support System and the Safety and Support System within the frame-
work of the development cycle model. This is accomplished in two parts. The
first part traces on the model the evolution of the personnel support systems.

The second part provides an introduction to the types of difficulties which
would necessitate retrofit. Since the HSSand the SSSare in many ways dif-

ferent, each support system is treated separately in the following discussion.
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HSS Evolution

The Human Support System

Human Support System development starts in Phase II in activity D-7.

Here representative design efforts are carriedto the point where confident

predictions can be made that HSS development is feasible and that it will not

drive the system out of the desired cost, quality position. Inasmuch as a

prime objective of D-7 is to establish a basis for selecting the size of the

crew for the local segment, Human Support System expense in terms of weight,

power, and volume for alternative crew sizes must be studied. By the end of

Function D, crew size will have been selected and with it a weight, power,

and volume budget for the Human Support System.

The functional design of the prime system is accomplished in Function

D. The prime system does not include the Human Support System, however;

consideration of its prime functional design must wait upon crew size stabili-

zation. Therefore, when the functional design of the prime Human Support

System is generated in Function E, design lags by one phase behind that of the

prime system. In order that design might catch up with the prime system,

the activity in Function E (E-12) that is concerned with Human Support System

design is charged with accomplishing both a functional design and a prime

means design. By this method, design of the Human Support System is accel-

erated so that requirements for operator and maintenance technician perfor-

mance in the HSS itself may be fed to other activities concerned with man per-

formance in a timely manner. In Function F (activity F-10} the additive set

for the HSSis designed, bringing the development process for this support sys-

tem to the point which permits fabrication models to be developed in Function

G (activity G-16) in parallel with the development of other fabrication models

for the system. The fabrication function is Function H; the Human Support

System is fabricated in activity H-12.

Of the three activities uniquely concerned with the design and fabrication

of the Human Support System (E-12, G-16, and H-12}, we will discuss only

E- 12 in detail in this chapter. Activities G-16 and H-12 are primarily
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hardware design and fabrication activities. They are unique hardware activ-
ities in that they are carried out in response to human factors requirements
and should thus not be confused with prime system hardware activities. Never-

theless, as hardware engineering activities they fall outside of the scope of

the present essay.

Activities E-12 and F-10 (see Chapter VI) develop requirements for per-
sonnel selection, requirements for operator and maintenance technician

performance to be obtained by training and job aids, and requirements for
materials to maintain reliability of human performances on the job. Such re-

quirements, as they are generated, must be fed to the appropriate man-related
activities identified in the model. Because the design of the Human Support

System is initiated somewhat belatedly, some of these requirements will have

to be fed to parallel personnel products activities. What remains for activity
H-12 after such requirements are sent out is a requirement for fabrication
of the hardware.

Retrofit Needs

The second area of concern is the adjustment of the HSS by means of

retrofit activities. Some of the major reasons for having to perform a retro-

fit are:

l. Hardware Packaging. -- When the hardware is finally put together,

packaging incompatibilities may be discovered which do not permit

adequate performance by man or by hardware.

o New Technology. D During the course of system development, new

processes or equipment may become available which were not antici-

pated but which are better for the purpose, with respect to reliability,

dollar cost, weight, power, or volume.

. Unanticipated Sources of Error. m Regardless of how well system

planning and design are accomplished, the real test of the system

during the development cycle is when it is entirely integrated and
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tested against the performance requirements established early in

the development process. During tests, some equipment or proce-

dure may yield an out-of-tolerance situation. It may not be possible

to anticipate, for instance, all the en_4ro__mental v_riables and their

effects on system operation. For this reason, changes in equipment

may have to occur as a result of system testing.

Retrofit problems specific to the HSS equipment would occur during the

"late" development activities. There are several primary "test points" where

HSS equipment could be found to be inadequate for one reason or another: H-12,

H-16, H-18, or H-20. Activity H-12 actually produces the equipment in its

final form. The testing required in H-12 may well reveal problems. In H-16

other problems may be discovered when trained personnel are brought togeth-

er with the HSS equipment. In H-18, the HSS means in toto (i. e., equipment,

people, job aids) may not function adequately with the prime hardware. Retro-

fitting at this point may turn out to be more costly and time consuming than

earlier retrofitting.

The last effort during the system development process where the HSS

could be found to be inadequate and require retrofitting would be during activ-

ity H-20. This activity is involved with testing the entire system (including

both the remote and local segments) for required performance capability. A

retrofit of a part of the HSS at this point could be extremely costly.

Because of the increasing cost of retrofitting as the development process

progresses through to H-20, the care with which the elements of the HSS are

fabricated and tested early in Function H cannot be overemphasized. While

the discussion has surrounded the HSS equipment with respect to retrofit prob-

lems, failure could occur on the part of personnel trained in HSS functions or

in the job aids subset produced specifically for the operation and maintenance

of the HSS.
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The Safety and Support System

SSS Evolution

An aerospace system is likely to present hazards not only to its ground

crew, but also to other personnel in the environment of the remote segment.

In fact, some systems may have potential adverse affects on agriculture and

industry in the environment of the remote base as well as upon people. There-

fore, concern with the Safety and Support System of the remote segment begins

very early in the development cycle. Even before Phase II is initiated, there

must be concern in Function C with the possible effects of alternative system

solutions on their environments. This concern will culminate in the adoption

of an "A" score formula by which the good and bad effects of the system on

its environment will be measured. A tentative "A" score formula will be in-

cluded in the Basic System Specification which is in the output of Function C

and initiates Phase II. Those facets of the "A" score formula which deal with

biological effects are a primary concern of the Safety and Support System.

Thus, the Safety and Support System is concerned with sustaining conditions

within the remote segment for the benefit of the remote crew members and

without the remote segment for the benefit of adjacent systems in the environ-

ment of the remote segment.

As in the case of the Human Support System, the Safety and Support Sys-

tem is anticipated in Function D (activity D-4). However, there is no attempt

to stabilize any aspect of the design of the Safety and Support System until its

functional design and prime means are considered in activity E-8. Activity

E-8 is discussed in this chapter. In activity F-7, the additive set for the SSS

is designed. This activity is discussed in Chapter VI. Fabrication models

and tools for the Safety and Support System are developed in activity G-7, but

fabrication is carried out in activity H-7. Both of these activities are con-

cerned primarily with the development of fabrication models and with the fab-

rication of hardware, and they are not discussed here in detail. As in the

case of the Human Support System, requirements for operation and mainte-

nance of the Safety and Support System are fed to appropriate activities in the

line of development for the remote segment as they are generated. The first
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integration and test of a complete Safety and Support System is undertaken in

activity H-16, where the trained crew and the Safety and Support System are
joined.

Retrofit Needs

The amount and variety of SSS means may be far greater than what will be

generated for the local system. This would certainly be the case in a manned

space venture, for which the SSS equipment might be distributed across the

face of the earth. The chances for error in the development of SSS means may,

in such a case, be much more numerous than for the HSS means. Therefore

retrofit problems may be more widespread for the SSS than the HSS.

The term retrofit as used here refers only to corrective actions on devel-

opment cycle end-product items. The end products which are related to the

SSS consist of the SSS personnel, their job aids, their performance mainte-

nance materials, and the SSS hardware.

Looking at the system development model once more, it can be seen that

the appropriate function during which retrofit would occur is H.

The first point in the development of the SSS where major needs for hard-

ware retrofit may become apparent is activity H-15. At this time, typical

personnel trained in SSS functions and their associated materials would be

brought together with the SSS equipment and tested as a unit. The SSS equip-

ment tested for performance during H-7 would bring with it data on test re-

sults to H-15. Similarly, the personnel trained in SSS functions would have

been carried to a required level of performance on such tasks. Likewise the

job aids and performance maintenance materials would have been validated at

this point. When everything is brought together, however, it may be antici-

pated that retrofit needs will be uncovered.

A bigger test of the SSS ability to provide proper support to remote seg-

ment personnel occurs in activity H-17 where the entire remote segment is

tested as a unit. During this activity, the system personnel who perform op-

erator and maintenance functions on system hardware must be supported by
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the SSSso that their performance remains within tolerance. Such a test of

the remote segment would show the effects of bringing together, in a simu-

lated operational situation, the complete remote segment. After this testing
the maximum retrofit effort would probably be initiated because of the great
variety of things coming together, resulting in more chances for errors to be
found. It is therefore necessary, during the earlier H activities, that con-
siderable pains be taken to coordinate efforts between parallel activities in
order to minimize the likelihood of retrofit after H-17.

Resources Needed

Inasmuch as this activity group does not include activities concerned with
hardware engineering aspects of personnel support system design and fabri-
cation, we will not here identify the engineering talent and facilities needed
for the purpose of preparing fabrication models or for the purpose of fabrica-
tion.

In the case of the Safety and Support System, what is required for activity
E-8 is basically scientific and engineering talent. To account for the design

of a system that will secure the well-being of crew members and of adjacent
populations, specialists are required who can identify potential hazards and
associate them with specific unwanted biological effects. Specialists who are
familiar with the state of the art of personnel system means are also needed

to identify potential solutions to the problems called out by the former group
of specialists. The latter group will include engineering talent specialized
in hardware and procedures necessary to implement a comprehensive support
system for the remote segment. In order to identify hazards and to support
the engineering group with design suggestions, it will ordinarily be necessary

to employ specialists in industrial hygiene, occupational medicine, psychology,
safety, and related subdisciplines. Ordinarily, it will not be necessary to
provide mock-ups and prototype equipment in support of activity E-8. Recom-
mendations will be based primarily on design review and survey.

The resources needed to implement activity E-12, which is focused on
design of the Human Support System, are somewhat different. Specialist
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talent in the fields of space medicine, human factors, physiology, toxicology,

and related disciplines will be needed to identify Human Support System re-

quirements. These specialists must be supported by an extensive data pool

to which they have ready access. The engineering talent required to accom-

plish a prime system design must be specialists in environmental control and

life support system development, and must have access to laboratory and fab-

rication facilities so that applied engineering experimentation may be carried

out as needed. Extensive tryout may be required even in the early stages of

Human Support System design because of the need to design within tight weight,

power, and volume budgets, and because of the requirement for very high re-

liability of Human Support System operation. Without access to logistic sup-

port from the outside, the accomplishment of high reliability operation requires

empirical testing.

In view of the important role that is played by anticipatory Human Support

System design in activity D-7, it would be reasonable to expect that the core

of the specialist group for activity E-12 would work in activity D-7 to assist

in estimating the Human Support System necessary for each size of crew con-

sidered.

Functional Design and Prime Means Design

of the Safety and Support System

Activity E-8 (Remote)

The output of this activity includes both a functional design and a means

design identifying the prime hardware needed to implement the Safety and Sup-

port System. Data must also be provided to show that the recommended Safety

and Support System will satisfy its requirements and that it can be fabricated

and operated within cost allocation. The input derives from E-3. It is a re-

quirement statement for the Safety and Support System which identifies the

manner in which the design will be evaluated.
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Functional Design and Prime Means Design

of the Human Support System

Activity E- 12 (Local)

A functional design for the Human Support System and a prime means

design are both included in the output of this activity. To support the recom-

mendation that the designs be employed, data are also required which demon-

strate that the Human Support System will provide conditions under which

expected reliability of human performances will be seen in the local segment.

Data are also needed to show that adequate local crew safety provisions can be

made to safeguard crew members in case of mission abort and that long-term

crew health and soundness of mind will not be impaired. Supporting data must

also demonstrate that the Human Support System can be fabricated within

weight, power, and volume constraints, and that its time demands upon the

crew will not degrade overall system quality. The input to E-11 derives from

E-4. It identifies the constraints within which the Human Support Systemmust

be designed and the manner in which it will be evaluated. It also identifies the

crew size.

Discussion

Safety and Support System

This section describes a representative set of steps for producing the

functional and means design of the SSS. The support of remote segment per-

sonnel is quite different than the support of local segment personnel. First

of all, the Human Support System is in use only while the local segment is

carrying out the flight part of the mission. Secondly, the local crew's size

and physical placement are well fixed. Neither of these facts necessarily

holds for the remote segment. For instance, the SSS means in the operational

situation must support personnel on the ground not only during the time in

which the local segment is "upstairs, " but also during preflight and postflight

phases. The remote segment, at least for a manned space mission, could

occupy several geographic sites, each of which would have personnel on-site.

Changes in manpower availability, fluctuations in the economy, variations in
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workload, and other factors would vary the crew complement within the

remote segment during its planned life. In addition, the remote segment

would probably have many more adjacent systems to interface with than the

local segment. The dynamics of interfacing with the adjacent systems (e. g.,

the "local community, " other aerospace remote-segment means personnel,

etc. ) would be much greater, since fewer constraints on making operating

changes would exist than for the local segment. The "A" score derived early

in system development (Function C in the development cycle model) would de-

fine the measure of interactions with adjacent systems.

In the past, remote segments have grown to support each local segment

as they are developed. At most remote segment sites, facilities have been

accumulated which are shared among the personnel of several different remote

segments. The practice of occupational medicine, as one example function of

an SSS, is often provided as a service to personnel associated with several

remote segments. Such "sharing" is a practical and economical way to main-

tain the health of site personnel for all systems served.

For purposes of completeness, this section is guided by the assumption

that the remote segment is built on "vacant" property. This initially forces

attention to SSS requirements, and allows that portion of the design method

devoted to means selection to consider those facilities which are really pres-

ent purely as alternative state-of-the-art means (and not as constraints). TbAs

approach provides the designer with the freedom he needs to be objective and

creative.

In what follows, we will present the essence of an approach by which ac-

tivity E-8 might be implemented. Our purpose is not to advocate an approach

but merely to use a stepwise discussion of the activity as a vehicle for char-

acterizing it. Activity E-8 will be partitioned into eight sequential tasks (see

Figure 10).

Task 1. Define natural environment. -- The objective of this task is to

identify for each remote site the environment to which remote segment per-

sonnel might be exposed during the life of the operational system if no SSS
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were provided. One component is the weather. What would be needed would

be the general weather conditions per site, and for launch sites, the distribu-

tion of weather conditions '--" ..... ÷.... 1_,_1_ within each site (if the topoi-

ogy and size of the site produces heterogeneous conditions).

Other data inputs will include distribution of inhabitants in the surrounding

area, data with respect to industrial installations and agriculture, and so on,

such that adjacent systems which might be affected by operations at the remote

site would be identified.

Even though this method strives to create an SSS for a remote segment

which has yet to be built, it is usually true that some facilities have been con-

structed earlier at some of the remote segment sites, albeit for other rea-

sons. These facilities typically contain SSS equipment (e. g., an air-condi-

tioning system within a building) for personnel support. The environmental

values (i. e., the actual capability of the SSS means already present as de-

scribed by their output) then become part of the "natural" environment present

at the site and must be described in the output of Task 1.

Task 2. Combine present with operational environment. -- The objective

of Task 2 is to determine the problems at each site when operationally created

and natural environments are integrated. When this is done, the total environ-

ment which would impinge upon site personnel assigned to the perfor,-nance u_

system functions will be known and factors affecting adjacent systems will be

identified.

The term "operationally-created environment" as used here means es-

sentially the environmental conditions engendered by the operation and/or

presence of remote segment (and local segment during the pre- and postflight

periods) prime system equipment and facilities. For instance, environmental

conditions produced by the operation of some equipment might result in toxic

vapors entering the atmosphere, increased temperature, vibrations, etc.

The input data which describe the operation of remote segment means

would be provided by the prime system means design activities which occur
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in parallel with activity E-8. In addition, activity E-5 (recommended main-

tenance functions) people would be asked to "look ahead" in the development

cycle to identify, for E-8 personnel, the maintenance equipment estimated

to be needed per site.

Examples of the output of Task 2 are presented in Table 1. This output

matches each inhabited site location with the environment which would obtain

therein and relates the effects of combining natural with operationally-created

environments. Column 1 on Table 1 contains examples of such combining.

Task 3. Identify threats to performance and health. -- The goal of Task

3 is to determine the extent to which man's performance and/or health would

be changed due to the combined environments and hazards associated with pro-

posed remote segment design ifnothing were done to alter the environments.

Since performance is the main concern, we wish first to isolate exactly

what performances are expected per individual per remote site location over

the life of the system. Task 2 provides input data on number of personnel per

site location and the values of the resultant environment to which they would

be exposed. Descriptions of operator performances per individual plus data

on how "good" (i. e., reliability, accuracy, timing) they should be are obtain-

able from the end products of activity D-4, the originating source. Interaction

with the personnel implementing activities E-5 and E-6 would yield similar per-

formance descriptions on maintenance functions on prime hardware and opera-

tor performance, respectively. Since the SSS would be responsible for sus-

taining al___lremote personnel, regardless of where they are or what they do, it

is necessary to obtain the same information on people who would do second-

order and beyond maintenance efforts. These include functions to maintain

the performance of maintenance people and maintain maintenance equipment.

These two types of functions are not determined until activities F-5 and F-7,

respectively -- removed in time from the need for the output of E-8.

To obtain descriptions of second-order maintenance functions, E-5 and

E-6 personnel would be required to "look ahead" to anticipate what the main-

tenance personnel would be doing, how many there would be, and where per
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site they would be located. They would be required to do this anyway, since

they must generate "supporting data" as an output (i. e., data provided as

evidence that the maintenance functions defined are those truly needed to sus-

tain the needed system reliability).

In order to produce the desired output, another input is required. This

is an exhaustive body of data on the behavioral and physiological effects on

man from environmental variables over the range of values expected in the re-

mote segment site locations.

Given the descriptions of manned functions, the effects of environmental

stressors and the actual environment to which man or contiguous groups of

men will be exposed, the major effort in Task 3 would be to predict which

performances by what personnel may be driven out of tolerance by the envir-

onment. Further, the effects upon man's immediate and long-term mental

and physical health should be anticipated and documented. Being able to pre-

dict effects on performance may be difficult (at best), since little work has

been done which relates environmental stressors to human performance. The

bulk of extant data emphasizes physiological effects. To the extent that this

remains true, rules for inferring performance changes from such information

would necessarily have to be derived and applied to those personnel who would

or could be under stress. This problem may warrant considerable research

during Task 3. If research is done, it should be carried out so that sustaining

operator performances receive top priority over maintenance performances.

That is, if cost and time become critical, the accent on sustentation of man

for carrying out maintenance efforts should ordinarily give way to operator

performances.

The output of Task 3 would be a description of the suspected/known changes

in man performances which would be out-of-tolerance in terms of required ac-

curacy, reliability, and timing. Hopefully, the elements of behavior to be

affected would be identified to provide specific criteria for SSS design. These

elements of behavior should be coupled with psychological and physiological

changes which would either cause or be associated with the behavioral changes.
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Task 4. Determine desired environmental conditions. -- Given the ex-

pected deleterious performance and health changes, this task would involve

determining the desirable (changed) environmental conditions for man which

would no____tyield these unwanted effects. There are also other SSS considera-

tions not environment-specific to be _,,_+=A _.¢_. F_ .............._'_=+_c_, man mnst

sleep, eat, drink, get rid of waste products, have free time, etc. All these

are within the responsibility of the SSS and help to maintain personnel to a

needed level of physical and mental health. Therefore, desired values for

these parameters would also be produced during Task 4.

Based upon the literature, environmental needs for personnel should be

specified for those functions which would be out-of-tolerance if the environ-

ment were unaltered. These needs are exemplified by column 5 entries on

Table I.

Several difficultiesarise when attempting to impose a performance cri-

terion on environment selection rather than a health criterion per se. The

theoretical concept of supporting performance is not difficultto grasp or to

justify, but implementing this concept is very difficultto do. It is problem,

atic for several reasons. First of all, there is a lack of data which specifi-

cally relate health to performance. Secondly, those data which exist may

very often be applicable to both health and performance. However, unless

performance is used as a measure, it is difficultto conclude this. Thirdly,

when utilizing a double criterion of performance and health, one runs into

eases in which the person's immediate health is affected by environmental or

working conditions but not his long-term health. Conversely, one can think

of examples in which a person's immediate health is not threatened but his

long-term health is.

The conflict lies in deciding whether or not providing environmental con-

ditions so that the person can perform his present activities within tolerance

is worth the resultant health difficultiesseveral years hence. Some means

for making such decisions must be generated. The burden would appear to

fallupon those responsible (i.e., the customer) for system development.

Therefore, what is required is a set of guidelines incorporated in the "A"

score, wherein the customer would set forth rules for making decisions on
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selective employment of performance and health criteria where conflicts arise.
This is a responsibility that would be purely his, and could only be made by
him through consideration of the follow-on system(s), adjacent systems, and

society at large. In fact, some decisions of this type may require his person-
al attention during the course of system development. These guidelines would

be employed to derive the desired environment for every worker or contiguous

group in the overall system environment.

Task 5. Calculate output requirements for safety and support system. --

The objective of this task is to generate the values of the environments which

the SSS means must produce to transform the "present" environment to the

"desirable" environment. Table 2 and column 6 of Table 1 provide examples

of needed SSS outputs to serve such a purpose.

TABLE 2. OUTPUT OF TASK 5

IDENTIFICATION OF ALL SSS OUTPUTS

MISSION

PHASE

(i. e.. pre-

flight, flight,

postflight)

SIT E

NO.

1

SITE

LOCATION FACILITY

(e. g., building,
station -- other

specific location)

FUNCTION

OPERATOR I MAINTENANCE

(identification code)

NO. ENVIRONMENT

PEOPLE PRESENT [ DESIRABLE _S

7 (in terms of actual values to

which personnel exposed)

The last column would contain the actual output of the SSS means. This output would, in the case of atmospheric parameters (e. g. , temperature,

relative humidity, air movement, pollution), "make up" the differences which would exist between the "present" and the "desirable" values. For out-

puts relevant to preventive medicine and industrial hygiene, the last column would map out a health monitoring program aimed directly at the remote

segment personnel. Periodic physical examinations and treatment for people who work in hazardous environments are exemplary of a method for

_ustaining man's performance through maintaining his health.

138



The needed SSSoutputs should be couched in terms of what the means
(man or equipment} should provide to the environment or to man. The ex-

a_m__plesin column 6 include specific values of environmental parameters

(i. e., top entry} and personnel relations with the environments (e. g., sixth
entry).

The sixth column should also contain the means capabilities for pro-

_S_ outputs for the "usual" needs of raan, e.g., sleep, nutrition,ducing _ _

etc. In addition, work-rest cycle recommendations should be made for all

remote personnel so that their performance may be optimized. This would

probably result in the use of modified working shifts for some remote per-

sonnel.

The remaining three tasks produce the needed outputs of activity E-8.

They are not discussed in much detail since the methods involved are well

known, as mentioned earlier in the text.

Task 6. Perform gross functional design, m The goal of Task 6 person-

nel is to identify, using the output requirements for the SSS as determined in

Task 5, the functions required to provide those outputs to remote segment

personnel. A gross functional design is done for the purpose of isolating the

major functions which must be performed and to identify the specific outputs

which each function must provide to p_oduce _^ required _ _Lllt;:_

Task 7. Select means alternatives. -- Based upon the gross functional

design delivered from Task 6, Task 7 personnel would use the specified out-

puts of each function to select alternative means for implementing those func-

tions. The alternative means would include both men and equipment to per-

form SSS functions. The costs associated with each alternative must be docu-

mented as well as the weight, power, and volume expenses for equipment.

Task 8. Generate means design, supporting data and detailed functional

design. -- In Task 8, the actual design of the SSS equipment and the specifi-

cation of man's role in the SSS are defined. During Task 8, functions alloca-

tion efforts would be performed to decide the degree to which man should
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implement certain functions. Techniques which are useful for this purpose

are documented in Report III of this series. The means design should be

taken to the point of detail to allow activity G-7 (fabrication models) to be

accomplished. This implies that complete physical characteristics, pack-

aging descriptions, parts identification and breakdown, and interface char-

acteristies between SSS equipments and between SSS equipments and others

(i.e., prime equipment and maintenance equipment) should be clearly stated.

Discus sion

Human Support System

In order to exemplify, but not to prescribe, the sequence of tasks by

which activity E-12 might be implemented, we will discuss, in the following

paragraphs, a ten-task procedure for activity E-12. The component tasks

are identified in Figure 11 by means of simple output descriptions and a

schematic representation of their interrelationships.

Task i. Identify critical functions. -- At this point in the development

cycle, activity E-4 will have yielded detailed descriptions of operator func-

tions. The local crew may have been allocated hundreds of functions over the

period of the mission. Using a performance criterion, it would be extremely

difficult to attempt an HSS design based upon, for instance, 200 or so opera-

tor functions, especially since the demands for support of man could vary

from function to function.

Therefore, the goal of Task 1 is to decide some way of deriving HSS per-

formance criteria from the total set of operator functions. A design which

would allow varying man's support in the operational situation for the perfor-

mance of each function (even if it were feasible) would not be cost-effective.

Similarly, the use of mean, median, or modal performance reliability esti-

mates (taken from all functions) as criteria would yield an HSS design which

would not truly support man's capability to perform the functions positioned

at the "tails" of the distribution, much less any functions in the middle.
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Onetechnique which appears reasonable involves the selection of criti-
cal functions, which essentially call for maximum physical and mental sup-

port for the man, from the total set of operator functions. Those which are
critical would provide criteria for man's support. This technique has time-
proven merit in that it is analogous to designing for the "worst conditions. "

The first effort in Task 1 would involve creating criteria for criticality

by which a subset of functions could be selected. It would be necessary to

derive a weighting scheme so that the criteria selected could be ordered in

terms of their ability to discriminate critical functions from the total set.

These criteria would then be used to select the critical subset, which is the

output of Task i.

The input data needed to perform this task would be a detailed description

of each operator function in terms of its required output, the tolerance within

which the output must fall, the mandatory reliability with which the output is

to be produced, the time required for the performance of the function, the

position and frequency of the function within the mission profile. In addition,

inputs would be required on the crew size, its duty cycle (i. e., the ratio of

work periods to "off" periods within the mission}, and the functions which

are performed per each personnel position (i. e., the job description of the

person or persons who would perform the function}.

Task 2. Describe environment. -- The business of Task 2 is to deter-

mine the performance-degrading properties of the intra- and extravehicular

environment across the mission under which the critical functions selected

in Task 1 must be carried out. If the degradation potential does not appre-

ciably change across the profile, then Task 2 would merely involve identifying

the environment as it would exist and affect performance. Descriptions of

environmental conditions during the mission, as an input, may be largely ob-

tained from the work carried out in activity D-7 (which is also the origin of

operator function descriptions} and E-4. Environmental parameters to be

described may include: "g" forces, temperature, pressure, etc. The criti-

cal operator functions selected in Task 1 may be compared against the envi-

ronmental conditions by laying out the conditions and the functions along a
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mission time scale. The placement or position of the functions along this
continuum plus the changing environmental conditions will allow a compari-
son of conditions to functions.

Intravehicular conditions will also be necessary as an input (again from
activity D-7}. The intravehicular environment descriptions will only be esti-
mates, based upon tentative HSSsolutions worked out in a gross manner

during activity D-7. However, advantage should be taken of earlier thinking

(i. e., the literature} to enable hypotheses to be made concerning the likely

environmental conditions when a nominal HSS is employed in the operational

situation. Rather complete descriptions should be available in the current

state of the art from previous space or aeronautical missions, depending

upon the type of local segment. Such intravehicular data would be useful in

characterizing the possible internal environment as the mission progresses.

One more subtask will have to be carried out to provide Task 3 with a

meaningful input. Since the business of Task 3 is to select critical functions

to use as criteria for HSS design, it is first necessary to relate the proba-

bility of man's performance degrading on critical functions to the environ-

ment to which he is exposed at any one point in the mission profile.

Task 3. Determine "lead" functions, m The objective of this task is to

isolate the "worst" cases from the critical functions. These would serve as

criteria for the development of the functional and means designs for the HSS.

Criteria for performing this selection must be the first item of business.

One criterion for selecting lead functions would be a high probability of

performance degradation when carried out under stressful environmental

conditions. A second useful criterion would be an extension of the first n

the frequency with which the function must be performed during the mission

under stressful conditions. Primarily, selection of lead functions would in-

volve finding those critical functions the performance of which would expose

man to the most stressful environmental conditions. Task 3 is essentially

a repetition of Task 1, except now effects of stressful environs may be con-

sidered.
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Task 4. Select nominal HSS values. -- Once the environment has been

described during Task 2, Task 4 would be begun as a parallel effort to Task

3. The end product of Task 4 would be a set of selected HSS outputs to pro-

vide for man's physiological and psychological requirements. These require-

ments will be those which are independent of requirements derived from

man's continuing capability to perform critical functions. The nominal HSS

outputs will be keyed to specific inputs necessary for man's general health

and welfare. During Task 4, most of those HSS inputs which are noncritical

function-specific (e. g., nutrition, personal hygiene) may be determined,

based primarily upon the health criterion (rather than the performance cri-

terion). Such nominal values are found in the literature and could be used

as a starting point upon which to tailor an environment for the local crew to

allow the optimal performance of its critical functions. The output of Task

4 becomes a necessary input to Task 6, which ultimately yields the HSS out-

puts towards which design efforts will be directed.

Task 5. Define HSS outputs for lead functions. B The objective of this

task is to produce a set of human support system outputs needed to support

the local crew members so that they may perform the selected lead func-

tions with the necessary reliability. The outputs are stated in terms of

values and tolerances, such as 72 +- 5 ° F for cabin temperature.

This effort would require scrutinizing the environmental variables

which affect the crew's particular capabilities that are called upon in the

performance of lead functions. The "lead" functions will have been chosen

because one or more of man's capabilities required to carry out that func-

tion will be sensitive to one or more of the environmental stressors in the

environment during the time when the function is to be performed. It is

only necessary to identify the HSS outputs which will be required to support

man's capabilities to perform the lead functions. (This is because nominal

values are derived during Task 4. ) The manned lead functions which would

have been selected are those which expose the personnel to a broad spec-

trum of environmental stresses.
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Table 3 provides a possible data documentation format for expressing

the output of Task 5. The human capabilities needed to perform each func-

tion would be listed. The expected values of the environmental parameters

thought to stress the capabilities would be listed under the environmental

heading. In the next column would be documented the anticipated time under

which the stressor would be present in the environment. The following col-

umn would explain the frequency v¢ith which the function would have to be

performed within each duration. The next column would indicate the prob-

able effect of each environmental stressor if no support measures were

taken to minimize or nullify its effects. The final column provides the

heart of the output of Task 5. The entries would be in the form of the value

of the environmental stressor which would be tolerable to the crew members

so that their functions would still be performed as required.

TABLE 3. OUTPUT OF TASK 5

IDENTIFICATION OF HSS OUTPUTS FOR LEAD FUNCTIONS

I
PERSONNEL

INVOLVED

PERSONNEL

EFFECT TOLERABLE ENVIRON.

VALUES
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It should not be construed from the above discussion that the environ-
ment should be "ideal" (i. e., nonstressful). Using performance capability

as the primary criterion allows an environment to be created which can in-
clude some "normal" stresses.

Task 6. Derive required HSS outputs. -- This task is essentially one of

comparing and integrating the nominal HSS outputs with the outputs derived

through consideration of lead functions. As a means for checking the ability

of the derived outputs to support man fully, a description of man's mainte-

nance functions must also be used. This would be especially important if

the crew is to be capable of performing extravehicular maintenance on a

space flight. Investigation of maintenance functions would uncover peculiar

means requirements for protective clothing, for instance, which might not

be discovered if man were considered only as one who performs operator

functions. During Task 6, both criteria come together: the man must be

supported so that he can perform (Task 5); he must be supported so that his

physical and mental health remain within bounds (Task 4).

Therefore, the output of Task 6 could be envisioned as a comprehensive

list of inputs to man from his environment (e. g., so much oxygen, humidity,

food, etc. ), inputs from, or interaction between, crew members, and sus-

pected outputs from man which could in turn affect his health (e. g., micro-

bial and physical contaminants, waste products, etc. ). In other words, the

output of Task 6 is comprised of all data required to produce both a func-

tional design and a means design for the human support system. The envir-

onment to which the crew will be subjected within the cockpit or within the

space cabin, as the case may be, must be specified. In addition, the reli-

ability with which each HSS output must be provided to the local crew must

be defined. The HSS outputs must be qualified as well by the imposition of a

tolerance on each output value beyond which the output should not be allowed

to vary for the given reliability.

The HSS outputs are really those environmental conditions which enable

desired responses to be elicited from the crew. Within the total set of

desired responses falls the individual's ability to interact with the other
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members of the local crew so that a cordial environment is maintained.

Some of the HSS outputs, such as the psychological health of the individual

and the nondiseased state of his physical being, may have to be considered

or expressed in a negative _o_,_v,_._'_ For instance, _.. terms of his behavioral

characteristics, it might be better to define as an HSS output the behaviors

which are unacceptable to the emotional equilibrium of the crew. Similarly,

requirements for physical states of health may also have to be expressed in

such a fashion.

Another output would be an expression of the capability which the HSS

must have with regard to the handling of waste products which emanate from

man or which result from his activities. Bacteria, feces, urine, wash water,

insensible water, waste paper, trash, lint, fingernail clippings, hair, skin

cells, etc. are examples of wastes from man which must be processed by

the Human Support System. Man also affects the temperature and humidity

of the environment, the controlled movement of air and its composition. An

HSS "output" to handle these types of endogenous conditions would have to be

couched in terms of the expected quantity and type of matter and energy pro-

duced by man physiologically and effected by his physical presence which

could be conceived as an input to Human Support System means which must

process it. The output in this case would be the end result of the processing

in terms of acceptable levels, for instance, of contamination (e. g., bacteria)

which the HSS could allow the crew to be exposed to, subsequent to proces-

sing.

Task 7. Perform gross HSS functional design. -- The functional design

establishes requirements for the HSS means design. It identifies each of the

functions which man or equipment would have to perform to yield the neces-

sary HSS outputs, (determined in Task 6). The output state of each function

should be expressed, depending upon the ultimate HSS output sought, in the

relevant units of measurement (e. g., 50 + 10% Relative Humidity) to allow

means designers to provide for the desired HSS outputs.

A functional design is important because its creation assumes no equip-

ment bias (in the purest sense). However, when a functional design is

147



carried to detail, or presented in such a manner that only one type of means

could provide the HSS outputs, then one is approaching means design. (A

detailed functional design is developed in conjunction with a possible means

design. )

The gross functional design may be characterized by input states, func-

tion boxes, and output states except that values and tolerances should accom-

pany each output. Figure 12 is presented as an example of a gross functional

design to produce a needed HSS output.

Some means design may take place at this time with respect to assigning

some function to the crew. Several HSS functions will have to be performed

by man (e. g., sleeping, eating, urinating, etc. ). These may be identified

at this time. All those tasks or activities which man would have to engage

in to maintain himself, such as sleeping, eating and bathing, can be speci-

fied. Time requirements to perform these vital manned functions should

also be declared. During activity D-7, an apportionment of man-hours (e. g.,

per day) to be devoted to operator tasks would have been made. Also in D-7

consideration of time was given across all three types of functions. On the

basis of this, a recommendation of crew size Was made. The remainder of

the 24 hours would be available for maintenance functions and HSS functions.

By the time the E set of activities is being accomplished, crew size is set,

providing a constraint for time apportionment to man for maintenance and

HSS functions. Task 7 personnel will require information from activities

D-7, E-9, and E-10, on the amount of time being recommended for operator

and maintenance tasks. Some trade-offs will have to occur between activities

E-12 and E-9 and E-10 to decide what functions are most important to proba-

bility of mission success. These trades will result in time apportionments

to maintenance and HSS functions.

The Human Support System functions which man will have to perform

should be laid out on a time scale, so that a cumulative total may be derived

for comparison and trade-off for the remainder, after time allowances for

operator functions are made. Some adjustment will probably have to be

made between maintenance and HSS function time allowances.
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Data would also be forthcoming ou_ of Task 7 with respect to constraints

on the schedule of work for the local crew within the 24-hour period. These

data will be recommendations for the most part, as to when, during this pe-

riod, man should be engaged in useful work, and when he should be allowed

to relax, based primarily upon man's performance fluctuations due to cir-

cadian periodicity. The actual work-rest cycle for the local segment cr_w

would be stabilized subsequently at the "subsystem" level on the model.

The above seven tasks are the precursors for actual means design of

the Human Support System. As discussed during the early part of the Dis-

cussion section, the first seven tasks are those which are peculiar to HSS

development. Subsequent functions would essentially be those with which

every designer is familiar: isolation of alternative means for the perfor-

mance of the nonmanned HSS functions; trading off to select specific means

from alternatives generating a detailed functional design for use in devel-

oping training programs (in G-13) and job aids (G-15); finally, the integrated

design and testing of all means required for the implementation of the Human

Support System goals.

Tasks 8 r 9, and 10. -- These tasks are concerned with the selection of

means by which to implement the functional design of the Human Support

System. The sequence is a familiar one in which candidate means are iden-

tified and alternative configurations are matched against overall require-

ments for the HSS until a configuration is found that is most satisfactory.

This set of means is then identified in sufficient detail to permit the devel-

opment of fabrication models. Typical Human Support System equipments

that may be called out are identified in Table 4.
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TABLE 4. TYPICAL HSSEQUIPMENT BY CATEGORIES.

Major HSSMeans
Categories

Repres entative
Equipment

I. Life Support - Environmental
Control System

Atmosphere gas supply and composition
control, pressure control, temperature
and relative humidity control, CO2
reduction, trace contaminant and bac-

teria removal, water management,
waste management.

o Medical and Psychological
Monitoring and Support

Diagnostic instrumentation for: cardio-
vascular system, nervous system,
digestive system, endocrine-metabolic
system, musculoskeletal system, re-
spiratory system; psychological tests
for: cognitive, perceptual, and affec-
tire capabilities/state, performance
decrement.

3. Hygiene Bathing equipment, shavers, etc.

4. Recreation and Sleep Recreation equipment (e. g., games,
books). Bunks, clothes storage.

5. Exercise Exercise equipment: bungee cords,
ergometer.

6. Food Management Food supplies, "kitchen" gear, etc.

7. Housekeeping Soap, towels, etc.
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DESIGN FOR RELIABILITY OF PERFORMANCES

AT MAINTENANCE TECHNICIAN INTERFACES

Activity Group Requirements

and General Considerations

Maintenance as used in this chapter includes those actions by man which

prevent an equipment from breaking dowr_ or which restore an equipment so

that the outputs of the functions which it implements will be in tolerance.

Maintenance is required in systems only when the available means for imple-

menting the functions in the system have inherent reliabilities less than that

required to meet the probability-of-output goals for the functions.

The decision to include man in maintenance actions (assuming that they

are required) is made prior to the initiation of this activity group (in activity

E-5 or E-9). Once the decision has been made that man shall participate in

maintenance actions, a number of follow-on decisions are required, including

consideration of what design features and characteristics must be built into

the equipment or supplied in supportive equipment to enable man to perform

the required actions. It is with this final decision area, design of equipment,

that this "human engineering" activity group (activities F-6 and F-9) is con-

cerned.

The requirement for this activity group is the result of prior decisions

that maintenance must be performed, and that man shall be included in spe-

cific maintenance loops. The outputs of this activity group include recom-

mendations, specifications, and drawings showing how the equipment shall be

designed to facilitate man's performance of these maintenance actions in order

that system requirements for quality (probability of success) are met. In

addition, of course, the output must also show that these recommended de-

sign features will be within all.ted costs.

The design interface between man and machine must provide the capabil-

ity for meeting the requirements for communication by the machine to the man

and control of the machine by the man. These requirements exist for operator
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performance interfaces as well as for maintenance performance interfaces.

There are, however, significant differences in the types and degree of com-

munication and control required in the maintenance situation, as opposed to

the operation situation.

In the operation of equipment, control of the equipment might be thought

of as exercised by man through the manipulation of control devices normally

located on the exterior panel of the equipment, or centralized on a console.

In the maintenance utilization of equipment such control is ordinarily exer-

cised only to verify the correct operation of the equipment or to isolate a mal-

function within the equipment. In addition to this, the maintenance technician

must also utilize his own physical performance capabilities to exercise direct

control over the parts, components, and units within an equipment. For ex-

ample, the maintenance technician must gain access to the interior of an equip-

ment to physically remove or control a malfunctioning tube or circuit board.

The primary implication of this type of control with respect to the overall de-

sign of the equipment is that for maintenance purposes consideration must be

given to the total design of an equipment, including the internal arrangement

of components and parts, as well as the means for gaining access to this in-

ternal arrangement. This contrasts with the operation aspects of the equip-

ment where the emphasis is placed on the externals of the equipment, such as

the arrangement of displays and controls on a panel, and is only indirectly

concerned with the physical interior of the equipment. Although it is obviously

true that an operator's control knob or handle has three dimensions, the dif-

ference between human engineering for operator performance and human engi-

neering for maintenance is essentially that of considering three dimensions

rather than simply the surface dimensions.

The man-machine interface for maintenance differs from that for operation

in a second significant manner, the variety of actions. Although there has

been a trend towards the development of general purpose equipment for opera-

tion, particularly information displays, most operator performance panels and

consoles are designed to accommodate a limited number of performance se-

quences. In many cases they are designed for a single sequence. This means

that displays and controls can be laid out to facilitate this single sequence without
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having to consider alternate sequences. This greatly simplifies the design of

the interface. The maintenance interface, however, must accommodate a

wide variety of performances by the maintenance technician. Maintenance

actions for a single equipment may include calibration, removal of the unit or

its components, servicing, troubleshooting, to replaceable components or

modules, mechanical adjustment, and many other actions depending on the

nature of the equipment and the maintenance requirements. Design of the

interface must, therefore, include consideration of all these different perfor-

mance sequences. It is almost inevitable that there will be design conflicts

between those various sequences as to the location or design of the equipment

components. A location of an access door, for example, that might facilitate

the removal of a power supply might hinder the removal of a preamplifier

unit. In addition to the conflicts among maintenance performance sequences,

undoubtedly there will also be conflicts with the optimal arrangements devel-

oped for operator performance. This is true because the same displays and

controls used in operation are also necessary, in many cases, for maintenance

actions. In troubleshooting, for example, the starting point for malfunction

isolation may be the report of a crew member as to the condition of the equip-

ment as evidenced by the displays and controls that he utilizes in operator per-

formance.

The multi-action nature of maintenance is true not only for the mainte-

nance technician but also for test equipment used by the maintenance techni-

cian. To stay within cost and quality constraints it is often necessary to

utilize test equipment with more than one prime equipment unit. This means

that the design of this test unit must accommodate, and hopefully optimize,

multiple man-machine interfaces. This is difficult to accomplish without im-

posing high performance demands on the technician, or increasing the proba-

bility of human error in using the test equipment.

This activity group (F-6 and F-9) is concerned with the following types

of maintenance interfaces:

(I) Direct physical interface with the prime equipments.
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(2) Indirect interface with prime equipments via mobile maintenance

or test equipments.

(3) Interface with maintenance equipments to accomplish maintenance

on prime equipments.

(4) Interface with maintenance equipments, both direct and indirect,

to accomplish maintenance on the maintenance equipments.

(5) Direct and indirect interface with human support system equipment

to accomplish maintenance on the HSS equipments.

This maintenance activity group (F-6 and F-9) is concerned with both the

local and remote segments of the system. For the purposes of this activity

group, there must be close interaction between the development of maintenance

interfaces for each of these segments. This is particularly true because many

of the maintenance actions will be accomplished by the remote segment on the

local segment. Examples of this interaction between the segments can be

cited for all classes of systems. For example, a number of "fixes" of un-

manned satellites have been accomplished from ground stations by utilizing

telemetry signals and the on-board sensors and mechanisms of the vehicle,

which have not always been designed for such purposes. In the case of manned

orbital vehicles, the interaction may consist of providing maintenance informa-

tion to the flight crew of the space vehicle. Finally, in the case of manned

aircraft, most maintenance is accomplished for the local segment by the

remote segment prior to, and following a mission.

Relationship of the Group to the

Development Cycle Model

Human engineering recommendations must be developed for both the re-

mote and local segments for maintenance interfaces. As indicated in the pre-

ceding section, the development of these recommendations is closely related.

For the purposes of this discussion, however, the emphasis will be placed on

the local segment. Differences between these parallel activities, and impli-

cations of the local segment for the remote segment will be identified.
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Although the only activities specifically responsible for the human

engineering of maintenance interfaces are F-6 and F-9 for the remote and

local segments respectively, these activities are closely related to, and

dependent upon a number of preceding activities in the development cycle

model. The first specific recognition of man's participation in maintenance

actions occurs in Phase II in activities D-4 and D-7. In these activities, the

primary focus is placed on the allocation of operator functions to the crew.

However, these allocations and the development of recommended crew sizes

must be based upon consideration of parallel developments in the hardware-

related activities, which are concerned with potential means for implement-

ing the system and the reliability of those means. As indicated earlier,

maintenance becomes a requirement when the inherent reliability of an avail-

able means falls below the probability-of-output requirement for the function

it implements.

In Function E, specifically activity E-9 (or E-5), requirements for pro-

viding needed reliability are considered and allocations are made to man,

when his participation represents the most effective solution to the reliability

problem. This results in a definition of those maintenance actions in which

man is required as a component. Evidence must be produced at this time

which shows that resulting maintenance interface problems are solvable.

A third activity which directly affects the human engineering of mainte-

nance interfaces is activity E-11 which provides recommendations for the

"human engineering" of operator interfaces. Although this activity does not

provide consideration of maintenance actions, it establishes constraints in

the sense that it provides recommendations for human engineering of the

equipment and workspaces to meet the human performance requirements with

respect to operation of the equipments. The solutions provided may be

optimal with respect to the requirements of the activity, namely operator

interfaces, but may cause problems for the human engineering of maintenance

interfaces. This is particularly true with respect to the layout of the work-

space. For example, efficient operation activities require a maximum of

centralization of activities. This is desirable from the point of view of man

as an operator. Usually, however, it is undesirable from a maintenance
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viewpoint since it tends to make access to the equipment difficult and imposes
certain difficulties in utilizing operational displays for maintenance purposes.
Thus it will be necessary for E-11 to consider the maintenance interface

implications when making their recommendations. It must be noted, however,
that easing of maintenance technician performance can be justified only in
terms of needed reliability gains achieved; ease of access, for example, is

not a goal for its own sake.

At the same time that design of maintenance interfaces is being accom-
plished (F-9), parallel activity is going on in activity F-10. This activity is
responsible for recommending required maintenance performance for the

HSS equipment, and for maintenance equipment. This activity stands in the
same relation to F-9 for these equipment, as activity F-9 does for the prime

equipment. Since this activity is in parallel with F-9 in the development
cycle model, close interaction is possible and design problems on mainte-
nance interfaces should be minimized.

A second parallel activity of interest is F-8. This activity is concerned

with techniques for maintaining the performances of personnel in accomplish _-

ing the maintenance requirements of the local segment. It is with this activ-

ity that maintenance interface design must interact and conduct joint trade-off

studies to determine whether maintenance performance capability must be

designed into the equipment for the crew, or whether selection, training, and

job aids can ease the requirements for human engineering of the maintenance

interfaces.

Subsequent to the completion of the activity for human engineering of

maintenance interfaces, there is no activity solely charged with this respon-

sibility. In Function G, the recommendations of the maintenance interface

activity will be implemented within the hardware activities through the incor-

poration of recommended designs in the fabrication plans for the hardware

elements. In Function H, the validity of the incorporated designs will be

tested as a part of the overall tests of the personnel products package in

activity H-14 and in activity H-16.
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In the event that recommendations for maintenance interfaces prove
inadequate in subsequent testing, there will, of course, be a necessity for
retrofit in this area. The typical retrofit need which arises involves unfore-
seen obstructions in the maintenance workspaces. Fortunately, the offending
equipment is often easily modified to remove the obstruction. Sometimes,
however, this modification is not at all easy, and requires expensive, time-
consuming redesign. If there are no inadequacies in the recommended de-

signs, then the real work of this activity will be completed in Function F,
barring any changes in system requirements or technological failures in
other areas which might impact the maintenance interfaces.

Resources Needed

Ideally, the staffing of this activity group would be drawn from personnel

who had participated in earlier activities in the development cycle which
relate to the design of maintenance interfaces. Although it is unlikely that
complete staffing can be accomplished in this manner because of the demand
from other activities for such services, it should be mandatory that at least
some of the personnel assigned to this activity group be selected from the
pool of personnel associated with the earlier stages of the development cycle.
This is critical not only for the reason that they know the system, but they
also know the candidate solutions that were considered and discarded.

Preceding activities which would provide a source of staffing for this
activity group are those activities that recommend which functions should be
done by man (D-7, E-9, and E-II).

Activity D-7, which deals with the allocation of operator functions and
the development of recommendations for crew size, would provide personnel

who are familiar with the early stages of the system development. Addition-
ally, they would have already considered the conditions imposed on crew

members of the local segment by the operational environment. Such data
from the operator considerations that were primarily dealt with in the D-7
activity would be generalizable to the maintenance performance area.
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Activity E-9 is the most critical input to the maintenance interface activ-

ity group since this is the activity that determines what maintenance actions

man will participate in, and makes preliminary selections of the way in which

he will participate. Obviously, sueh personnel would be thoroughly familiar

with all of the candidate approaches that were considered in this activity. It

is also true that such personnel would be requirements-oriented, which would

provide a balanced combination with the more hardware-oriented personnel

who are also required for properly implementing this activity.

A third potential source for staffing the F-9 activity is activity E-f1, the

human engineering of operator interfaces activity. Although the primary

concern of these personnel in their original activity is man's operator per-

formances and a consequent focusing on the externals of the equipment, they

would be valuable both for their knowledge of the selected means and the

constraints imposed by operational requirements.

In general, this activity should be staffed by personnel who may be de-

scribed as a eross between maintenance engineers and human engineers. In

all cases, it is highly desirable that personnel associated with this activity

be experienced with the real field problems of maintenance, both in the re-

mote and local segments. The reason for this requirement is the fact that

although it is often straightforward to simulate the operational performances

required in a system, and to a large extent the operational environment in

which the performances must occur, it is considerably more difficult, if not

impossible, to adequately simulate all of the environmental forces (both man

and nature) that impact on the maintenance actions in a system. Therefore,

it is necessary to have the most experienced personnel when designing and

testing the interface equipment, in order to consider all of the potential

effects that these factors may have on maintenance performance capabilities.

In addition to the technical personnel discussed above, this activity

should have available support personnel to deal with the cost element aspects

of maintenance interfaces, and to provide the test facilities required for

verifying the efficacy of the proposed solutions to the maintenance interface

problems.
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The requirement for equipment and facilities to support this activity is
primarily with respect to test facilities. The principal type of testing required
for this activity is in the use of fairly sophisticated mock-ups of the local and
remote segments of the system. These mock-ups must be somewhat more

sophisticated than those used for the operator aspect of the system because
of the fact, pointed out in earlier discussion, that a maintenance interface

involves the internal as well as the external configuration of equipment.

Design of All Maintenance Interfaces and Workspaces
Activity F-6 (Remote)

This activity must produce recommendations for solving interface prob-
lems between maintenance technician performance and the hardware involved
in maintenance technician performance. Maintenance technicians interface

not only with the hardware to be maintained, but also with hardware which is
employed for the purpose of carrying out maintenance. The output may in-
clude recommendations for the design and packaging of hardware, and recom-

mendations with respect to the training of maintenance technicians and to job
aids, where training and job aids can be employed to alleviate interface prob-
lems. The output of F-6 is concerned with the remote segment.

The input to this activKy derives from F-3, a personnel products techni-
cal management function. This input will specify the manner in which the
solutions recommended will be evaluated. Evaluation will be basically
related to overall probability of system success.

Activity F-9 (Local)

This activity is concerned with the design of maintenance interfaces in
the local segment. Its output must contain recommendations for solving
interface problems. That is, its output must recommend job aids or training,
or equipment design solutions wherever required to provide for the proper

articulation of maintenance technician performance with the equipment em-
ployed in maintenance, and with the equipment being maintained. The criteria
for proper articulation will be given in the input which derives from F-4. The
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input will also state the constraints within which recommendations must be

made. They will be the typical constraints that must be observed in the

design of the local segment.

Discussion

The specific initiating inputs for the human engineering of maintenance

interfaces of the remote and local segments are provided by activities F-3

and F-4. These two activities are in the personnel products technical

management group. As such they must provide the specifications and re-

quirements for the various personnel products activities, as well as ensure

that the imposed requirements are met by the concerned activities.

In effect, these initiating inputs establish specifications for what must be

accomplished within the maintenance interface area, and define the techniques

and procedures for measuring whether or not the outputs meet these specifi-

cations.

With regard to the maintenance interfaces, the personnel products activ-

ity group will allocate requirements based primarily on the results of activ-

ities E-5 and E-9 which determine what maintenance functions are to be

performed on the prime equipment. The allocation of these requirements to

the maintenance interface activity does not specifically constrain how the re-

quired quality may be achieved, but it does specify precisely what quality is

necessary in terms of how that quality would be measured. It does not, for

example, specify a "level of automation" that should be utilized in check-out

functions but simply that check-out must be achieved within specified con-

straints of time, weight, power, etc..

A critical aspect of this "work statement" imposed by the initiating

activity is the question of the tests or demonstration to be used in measuring

the quality of the output of the maintenance interface design activities. Spec-

ification of these tests and demonstrations will dictate, to a large extent, the

types of internal interim testing that will be accomplished with the mainte-

nance interface design activities, since it is necessary to anticipate any
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potential "no go" situations prior to the completion of the activity. This
specification should not, however, limit the maintenance interface activity

from utilizing other nonspecified tests for measuring the degree of progress
in achieving specified objectives.

The first task in response to these requirements is the organization of
the data resulting from these previous activities. A typical five-task approach
to activity F-9 might proceed as follows, starting with data organization.

Task i. Review functional allocations for maintenance of prime equip-

ment. --The output of activity E-9, which results in a recommendation of

maintenance functions that must be performed on the prime equipment, will

result in an identification of each occurrence of an intersection of a mainte-

nance function with a piece of prime equipment. Depending upon the degree

of equipment design available, the equipment side of this intersection may be

defined at as gross a level as a subsystem, and at as fine a level as a specific

end item of equipment, or even possibly a subassembly or component. Re-

gardless of the level of detail of this output, it must first be organized to

facilitatethe accomplishment of the maintenance interface design process.

The objective of this organizing task is to identify related equipment

items so that an integrated approach to maintenance design may be developed

for each unit or subsystem configuration. Such an organization will minimize

the possibility of developing design approaches which are internally inconsis-

tent within the equipment framework.

To facilitate the organization of the maintenance functional data, the

initial step (if it has not already been accomplished) is to organize the mate-

rial into an equipment-by-maintenance-function matrix. Cell entries in this

matrix should identify the following characteristics of the intersection.

. Estimated human performance capability required for

performance of the maintenance function.

. Time constraints imposed on the function as a result of the

relation of the affected equipment to the mission profile.
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. Unusual work-environment considerations. For example, in a

space mission must the maintenance be performed outside the

vehicle ?

4. Typical layout of the equipment with respect to other equipment

in the system.

o Required frequency of performance of the function if it is periodic

in nature, or estimated mean time between failures if it is a

corrective function.

Once the matrix is completed, it would be possible, of course, simply to

assign each cell of the matrix to a human engineer for the development of a

design solution to the intersection. This approach is inefficient, however,

because it increases the likelihood of incompatible solutions to the design

problems, and increases the likelihood of duplication of effort. The next

step, therefore, should be a systematic reduction of the matrix to a minimal

number of design packages requiring solution. This reduction of the matrix

should be made using the following c.,mortalities.

. Similarity of requirements with subsystems. For example, there

may be a number of functions within a subsystem all of which

require the same procedure for gaining access to the internal

configuration of the equipment. This preliminary procedure should

be developed once, and then applied to all relevant situations.

. Common location. Based on the matrix entries, locational packages

may be identified where the human engineering, particularly of the

workspace layout, requires a single design approach. This approach

applies particularly to the area of extravehicular maintenance for

space missions.

Application of the above grouping principles to the function-by-equipment

matrix should result in the reduction of the matrix to a manageable set of

design packages for assignment to human engineering design individuals or

teams. The requirements for each design package consist of the summary of

entries in the cells with the additional suballocation of cost elements assigned

to the maintenance interface design activity.
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Task 2. Develop candidate design solutions. --The development of

candidate design solutions for each of the identified packages might come

from one or the other of the following sources.

I. Candidate solutions proposed and studied in activity D-7 in which

man's basic role in the system is defined. These solutions will, of

course, require further study and development to determine their

probability of success within cost and quality limits.

. Similar systems. Many of the design solutions for performance as

well as maintenance are rooted in extrapolation from solutions that

have worked in similar systems in the past. The danger here is that

the requirements associated with the older system do not match those

of the system under development. Included within this area is the

general experience of the design personnel with the maintenance

technology existing at the time of the system development cycle.

In the case of advanced systems, often the system under development is

the first of a kind. Therefore, there is no operational experience available

to aid in the selection of a particular candidate design. In these situations, it

is usually necessary to make extrapolations from experimentally derived data.

This is particularly true at the present time with regard to the design of space

systems for which little operational data is presently available, e.g., extra-

vehicular maintenance. In such cases, the actual selection of a particular

candidate design must rely on experimental data obtained during simulation of

the expected operational environment.

Each of the proposed candidate solutions must, of course, be screened

prior to testing to ensure that there is a reasonable probability that the ap-

proach will meet the requirements for that design package contained in the

function-by-equipment matrix cells.

Task 3. Test candidate solutions. --Testing of maintenance interface

design solutions will be guided by the specifications imposed by the personnel
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products activity group through activities F-3 and F-4. During pilot or pre-
liminary testing, it may be necessary to deviate from the specified tests until
an initial determination is made of the feasibility of the approach. In general,

the testing of maintenance interface designs is accomplished through table-top
paper validation of the approach, or through some form of simulation. Table-
top validation is usually necessary as a preliminary to full-scale simulation,
but may not be acceptable as final demonstration unless there is no way in
which simulation can be accomplished.

Within the possible approaches using simulation, the following three
types are appropriate to the problems of maintenance interface design.

, Mock-ups (Static}. Static mock-ups may be either soft or hard

versions of the proposed equipment configuration, depending on the

state of development of the configuration and the time and money

available for the test program. Mock-ups are particularly useful

for testing accessibility of equipment for removal and replacement

maintenance actions. One difficulty that may be encountered in this

technique is that since maintenance is dealing with the total configur-

ation of equipment, both internal and external, the cost of such

complete mock-ups may be prohibitive.

. Mock-ups (Dynamic}. Dynamic mock-ups usually consist of hard

mock-ups that are activated either under manual or computer

control. The techniques used in activating these mock-ups may be

simply a simulation of the inputs and outputs of the system rather

than a working prototype. The primary advantage of this testing

approach over static mock-ups is that it enables collection of data

regarding performance times of maintenance actions in a dynamic

environment. This is particularly important if the actions are

externally paced for the maintenance technician. That is, if he

must perform within time constraints imposed by the equipment,

rather than pacing the action at his own speed.

3. Computer simulation. The final category of testing deals not with

man-in-the-loop simulation, but rather with computer simulation of
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the maintenance situation using a form of mathematic model. This

type of simulation is particularly effective for determining the effects

of overload on maintenance performance under unusual situations in

which a number of maintenance actions are required essentially

sii-nultaneously. Computer simulation is also very effective for

identifying potential conflict areas between various design package

solutions that have been developed independently.

Task 4. Analyze test results and select design solutions. --Based on the

results of the test program, candidate solutions will be selected for each of

the design packages. This initial selection must be verified through computer

simulation (or other appropriate techniques) to ensure that there are no con-

flicts within the maintenance interface design areas.

In the event that the optimal design solution for maintenance is in conflict

with established equipment or workspace layout resulting from the human en-

gineering of operator interfaces, trade studies should be conducted to see if

there is an acceptable alternative from the operator viewpoint that is not in

conflict with maintenance requirements. Although interface designers will

naturally endeavor to avoid such conflicts, it is inevitable that they may occur

and must be resolved.

±a_K 5. ,mpie_uent r

recommended design solution for a maintenance interface package, and en-

suring that it is not in conflict with other aspects of design, there still re-

mains the task of implementing the solution. By this is meant the preparation

of detailed drawings and specifications of the proposed solution. It also means

the preparation of the supportive data for the approach sorted out during the

testing program.

The above approach must also be applied to the design of maintenance

interfaces for the Human Support System, and for maintenance equipment.

After completing the design solution for the prime equipment, the same tasks

must be performed with reference to the Human Support System and mainte-

nance equipment.
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A critical difference in the approach to the HSSand maintenance equip-

ment is that these tasks are performed in parallel with the determination of

the required maintenance functions associated with the equipments, rather
than after the fact as was true of the prime equipment. This requires close
interfacing among the concurrent actions.

The required maintenance functions for both maintenance equipment and
the HSSare determined in activities F-7 and F-10. For practical interface
with these activities, personnel assigned to human engineering design of these
interfaces should function in concert with personnel from the lead activities.

Another area of interface of direct concern to the design of maintenance
interfaces is that occurring in activities F-5 and F-8. These two activities
are concerned with the maintenance of maintenance technician performance
in the remote and local segments respectively. Trade-offs with those activi-
ties are required in the development of candidate design solutions of mainte-
nance interfaces since these are the activities concerned with the selection

and training of personnel to implement the maintenance actions. Maintenance

interface design must at all times be sensitive to the human performance
capabilities that will be available for implementation of the design solutions
either as a result of training or selection.

Research Note

Maintenance interface design activities are primarily concerned with de-
sign and demonstration of maintenance or maintainability, rather than main-
tainability prediction. The primary lack in this area is not with regard to

techniques for selecting what actions must be demonstrated, but rather speci-
fications of the conditions, environmental and personnel, that constitute an
adequate demonstration of the maintenance actions.

Activity F-9 (Local)

The primary output of this activity is the recommended human engineering
design package for maintenance interfaces of the prime equipment, maintenance
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equipment, and Human Support System equipment. The design package will
consist of such things as engineering drawings of maintenance interfaces,
specifications for equipment, and procedural or technique descriptions re-
quired to implement performance of the required maintenance actions. These

are things which are produced for the benefit of the development cycle, and
are not end products of development. Their purpose is to assure that the
operational system means will be capable of working together to produce the

required system quality.

At this point, the development strategy which we are using becomes

apparent. In any development cycle what is really required is a collection of

means which, when joined together, will produce an operational system of

the required quality. Conceptually, a system designer could take all possible

means that exist in the world and put them together (on paper) in all possible

combinations, and pick that combination which produces an operational sys-

tem of the highest quality. As it turns out, such a thing is fantastically un-

feasible. Therefore, development strategies are devised which enable the

designer to come up .with an operational system of satisfactory quality without

resorting to brute force methods of exhaustion. In fact, the need for human

engineering of maintenance interfaces in our development cycle model is part

of our strategy for achieving an operational system as efficiently as possible.

" -* L,,_ma3or ...._.... + oho ,,I_ _,_ designed _*,Brielqy, this sh_ategy says Lh_ *_^ " _ ...................

and only then do we worry extensively about the compatibility of this equipment

with the people who must maintain it. Notice that this procedure is clearly

imperfect, for the exact human engineering implications of the maintenance

on a particular piece of equipment bears heavily on the desirability of that

piece of equipment. Nevertheless it beats having to take all combinations of

equipment with people to see which is the most desirable.

The objective of any activity in a development cycle is, of course, ulti-

mately to enable us to select the means and the procedures for hooking them

together such that an operational system of high quality will result. There-

fore, any activity in the development cycle (including this human engineering

activity) must be judged by the extent to which it can contribute to our selec-

tion of the means and the way of hooking these means up to produce a high
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quality system. Now the human engineering activity may produce engineering
drawings, adaptation equipment, or even prescriptions for pep pills to keep
the maintenance men awake during long maintenance stretches. But whatever

the items are which are produced by this activity, they are ultimately judged

by their contribution to the selection and assembly of the means to produce a

high-quality operational system.

In addition to the primary outputs of this activity which we have alluded to
above, this activity must also produce a data package demonstrating that the

primary outputs are good. Therefore the data package must demonstrate that
man can relate with the other system means in such a way as to produce a

high-quality operational system. Now to show such a thing is a very big job,
and many of the things which would have to be shown are not in the realm of
what is ordinarily thought of as human engineering of maintenance interfaces.
However, all the other activities within the development cycle must also pro-
duce similar kinds of data which demonstrate that their products yield a high-

quality operational system. Therefore, we may expect a great deal of help in
the preparation of this data package from other activities within the develop-
ment cycle. In fact, perhaps the preparation of this data package may be
viewed as a joint effort of the personnel in this activity with the personnel in
many other activities in the development cycle. The contributions to this
data package from personnel in this activity might include such things as:
demonstration that the workspace available for maintenance is adequate for

man to use, demonstration that the lighting available at maintenance points is
adequate, demonstration that parts can be removed without the requirement
for a third hand on each maintenance man, or, finally, perhaps the demon-

stration that the maintenance tools provide the assistance which is required

in the operations which they are to support. Some of these demonstrations

may be provided by walking a human being through maintenance actions in a
mock-up operational system.

In both the remote and the local segment, human engineering efforts are
present because of their beneficial effects on the cost and quality of the opera-

tional system. If any one big difference is to be pointed out between human
engineering in the remote segment versus human engineering in the local
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segment, it might be that the human engineering efforts in the remote segment

typically produced beneficial effects on system costs, whereas human engi-

neering efforts in the local segment typically produced beneficial effects on

system quality. Thus, in the local segment (particularly in the case of long-

duration missions) superordinary human engineering may be an absolute must

to prevent ultimate system failure. If, for example, the maintenance tasks,

because of seemingly innocuous obstructions within the equipment to be main-

tained, cause even moderate extensions in the time required to perform the

maintenance, then delays for repairing equipment failures can become longer

and longer until total system failure results. In the remote segment, such a

situation can ordinarily be circumvented simply by pouring more maintenance

men into the troubled area until the failure is halted. In such a case, quality

is maintained, at the expense of larger cost. In the local segment, however,

it may not be possible to maintain quality at any cost.

Dis cussion

One of the steps involved in ensuring that the maintenance design will

indeed yield an operational system of the required overall reliability, is a

demonstration that the maintenance technicians can work with the equipment

to be maintained in such a way that the required probabilities of function out-

put are achieved. This demonstration falls within the province of the activity

which recommends the human engineering of the maintenance interfaces

(activity F-9). Not only is F-9 responsible for demonstrating that the mainte-

nance technicians are able to relate properly with the equipment to be main-

tained, but itmust also make the actual provisions for equipment design to

ensure that this occurs. These provisions actually form a part of the main-

tenance design of F-12. Without them, the design state at F-12 is incomplete,

and the total design solution which is supposed to be ready at this time is not

finished.
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XI. TECHNICAL MANAGEMENT OF CREW

PAC!_G E DEVELOPMENT

Activity Group Requirements

and General Considerations

The crew package is one of the end products of a system development

cycle, and would be developed along with other end products. The crew pack-

age consists of trained personnel, of job aids, and of materials for use on

the job to maintain human performance. When a crew package is produced

as an end product, it is because a set of man performance capabilities is re-

quired for the operation and maintenance of the system. The ultimate evalu-

ation of the crew package is thus made in terms of operational system perfor-

manee.

A candidate for membership in an aerospace system crew comes to the

development cycle for training in a "prepackaged" form. This unique feature

of man requires that he be given unique treatment. Unlike a hardware item

purchased from a vendor in packaged form, man is not amenable to repack-

aging. Because a prepackaged man has the capability to implement a variety

of functions, once it is determined that he will be employed as a system means,

a full complement of functions is allocated to him to make full use of his capa-

bilities. The result of this allocation of function process is that a man may be

assigned a wide variety of differing tasks. But prepackaged man is not com-

partmentalized in such a manner that his capability to perform one thing is

unaffected by his capability to perform another. Therefore, there is need to

attend carefully when allocating functions to a crew member to assure that

conflicting performances will not be assigned to him. Care must be taken to

avoid the assignment of two conflicting tasks that must be performed at the

same time, and care must be taken to avoid the assignment of tasks that will

give rise to internal conflict because of the noncompartmentalized nature of

man.

In this chapter, we are concerned with those activities which provide the

technical management necessary for the fabrication (training) and delivery of
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crew members as means in an operational aerospace system. The technical

management that is needed must recognize that each crew member comes as

a prepackaged unit and that he must be trained and utilized as a prepackaged

unit without compartments. The end product of the activity group, the crew

package, includes three classes of end products of the development cycle:

trained crew members, job aids, and materials for use on the job to maintain

human performance.

The technical management activities to be discussed in this chapter under-

take first the task of defining the job makeup of each crew member. These

technical management activities then oversee the production of training mater-

ials, of selection procedures, of job aids, and of the materials necessary to

maintain crew performance on the job. These technical management activities

also oversee the training of the crew members and the development of data to

demonstrate that the crew package meets the requirements imposed upon it.

These technical management activities do not include management of person-

nel support systems development.

The crew package development activities may be seen conceptually as a

splinter group of the personnel products technical management activities dis-

cussed in Chapter V. The first activity in the crew package group appears in

Function G of the development cycle model. Previous related activities have

been encompassed by the personnel products technical management activities.

In Function G, however, there is need to stabilize the job makeup for each

crew member, and to determine how the performance capabilities assigned to

each crew member will be obtained. These decisions require a unique focus

upon crew members as individuals and, therefore, calls for a specific effort

to integrate the crew package within the integrative efforts of personnel prod-

ucts development. The activities which are the topic of this chapter are de-

signed to fulfill this need. The integration of the crew packages as a whole

and of the personnel support systems remains the responsibility of the person-

nel products activity group.

There is justification for crew package management from yet another

point of view. The job performance capability of any crew member will ordi-

narily be promoted by the use of three techniques which must complement
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each other so that the total job performance capability of each crew member

is fully accounted for. The three techniques are: (i) crew member selection,

(2) training, and (3) support of job performance by means of job aids. The ac-

tivities in the crew package group provide for the integration of the separate

activities concerned with these three techniques so that the activities will com-

plement each other and yet be matched to the needs for each individual crew

member.

Relationship of the Group to

the Development Cycle Model

This activity group includes eight activities, two pairs in the line of de-

velopment of the remote segment, and two pairs in the line of development of

the local segment. Activity pairs (G-5, G-17) and (H-5, H-13) provide re-

spectively technical management of the development of fabrication models and

tools, and technical management of crew training (fabrication) for the remote

segment. Activity pairs (G-6, G-18) and (H-6, H-14) are concerned in a sim-

ilar manner in the development of the local segment.

The activities in this group relate to the technical management of person-

nel products development in roughly the same manner as the latter group re-

lates to activities D-4 and D-7. Thus, the activities of concern here are an

outgrowth of the activities concerned with technical management of all person-

nel products. The genesis of the activity group under discussion here is found

in the technical management activities in Functions E and F.

The crew package for the remote segment includes all of the personnel

products of the development cycle except the Safety and Support System. The

crew package for the local segment includes all of the personnel products ex-

cept the Human Support System. Thus, a crew package includes trained crew

members capable of operator and maintenance technician performance, job

aids, and materials for maintaining operator and maintenance technician per-

formance on the job. 1 The crew packages delivered as outputs of activities

1
Man-machine interface problems are considered in Functions E and F, and

the solutions are therefore not in the crew package.
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H-13 and H-14 also include supporting data which demonstrate that the crew

packages satisfy the requirements for them.

In Function G, crew package management encompasses the fabrication of
job aids, the fabrication of training materials and other training accoutrements,
the preparation of fabrication models for materials to use on the job to main-
tain human performance, and instruments for selecting trainees. This list
encompasses all of the "production" activities in Function G concerned with

personnel products except for those concerned with the development of fabri-
cation models for personnel support systems. In Function H, the crew pack-
age technical management activities embrace the training of personnel and the

fabrication of materials for maintaining human performance on the job. Again,
the only activities not included are those concerned with the personnel support
systems.

Activities G-5 and G-6, which are the first activities in the group, include
the allocation of job performances to crew members as a basis for the prepa-
ration of requirements for job aids, training materials, and the like. Activ-

ities G-17 and G-18 are concerned with the evaluation and integration of the
crew products prepared in Function G. Activities H-5 and H-6 include the

selection of candidates for training, the selection and training of instructors,

and the specification of requirements for training in Function H. Activities

H-13 and H-14 evaluate the delivered crew packages independently of the per-

sonnel support systems and develop data to show the "goodness" of the pack-

ages. The remaining activities in Function H include follow-up evaluations

at increasing levels of integration of the system until in activity H-20 the en-

tire installed system is evaluated and demonstrated.

Resources Needed

Inasmuch as this technical management group is an outgrowth of the activ-

ity group concerned with technical management of all personnel products, it

is not surprising that many of the requirements for personnel resources are

similar to those for the parent activity group. Technical management, as it

is conceived here, includes not only the determination of what must be done by
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the activities managed, but also includes the monitoring of those activities

and providing technical support whenever corrective action is necessary.

Technical management also includes the evaluation and _".....in_e_ _L_on of the end

products of the activities managed. To determine the skills necessary to dis-

charge these responsibilities requires consideration of the activities to be

managed. These include activities concerned with job aids, with training,

with personnel selection, and with the preparation of material for maintaining

human performance on the job. It also includes instructor selection and

training and training program development. It follows that the manning of the

activities in the crew package group must include specialists who have experi-

ence and up-to-date knowledge of the state of the art in each of these areas.

In addition, specialist skills are required in the allocation of tasks to crew

members in activities G-5 and G-6. For a crew size greater than two or three,

computer assistance in fitting job assignments within tight constraints may be

required.

The activities in the group which are Concerned with evaluation (G-17,

G-18, H-13, H-14) require for their implementation personnel skilled in the

development of test procedures and in the analysis of test results. Mock,ups,

simulators, and the like will often have to be fabricated for implementation

of testing.

Special Note

As in the case of the technical management activities for the personnel

products package, an exhaustive description of the inputs and outputs of the

eight activities in the crew package group would be highly redundant, for these

activities repetitively implement a basic technical management principle.

That principle is discussed in Chapter V. The reader is referred to that

chapter for a discussion of the phi function concept and the concept of speci-

fication of activity outputs in terms of the test by which they will be evaluated.

Suffice it to say here that these concepts are assumed as being central to the

technical management concept.

177



The activities in this group fall into four natural pairs, the first of each

pair being concerned primarily with specification of design or fabrication ac-

tivities, and the second being concerned with integration of the outputs of de-

sign or fabrication activities. However, some requirements for design and

fabrication are placed on the technical management activities themselves;

these will be discussed in what follows.

Development of Fabrication Models and Tools

for the Crew Package

Activities G-5 and G-17 (Remote)

Activity G-5 initiates the crew package design and fabrication activities

in Function G. The four activities which are initiated must, however, be

complementary to each other such that they comprehend completely the capa-

bility and performance reliability required of each crew member. Thus, ac-

tivities G-8, G-10, and G-11 are concerned respectively with job aids, training,

and selection of crew members. Because these three methods taken together

must account for the total performance capability of each crew member, tech-

nical management is required to preclude unwanted overlap and to preclude

gaps in coverage of the tasks assigned to each crew member. Taken together,

these three activities provide for the basic capability of each crew member

but activity G-9 must be taken into account in order fully to provide for the

reliable performance of each function allocated for crew performance. Tech-

nical management of the entire set of activities is required to ensure that over-

all reliability objectives are achieved. It is therefore the task in G-5 to es-

tablish requirements for activities G-8 through G-1 I, such that capability and

reliability requirements will be met for each crew member.

Previous to the initiation of G-5, no activity will have concerned itself

with the stabilization of the job makeup for each crew member. The achieve-

ment of stabilization is not possible prior to Function G, simply because all

of the data required for stabilization will not have been accumulated. Before

the orders which are the outputs of activity G-5 can be prepared, the job make-

up for each crew member must be identified. Therefore, an early task in

activity G-5 will be finally to allocate operator and maintenance technician
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performances to specific crew positions. This must be done taking into ac-
count selection, training, and performance burdens which are imposed on

v_ol_o .... What

is desired is that the problems of selection, training, and job-aiding and the

problems of performance reliability be minimized to the greatest extent pos-

sible by means of exercising choice in the allocation of tasks to crew members.

One of the activities which follows G-5 (G-8) is concerned with the fabri-

cation of an end product of the development cycle. Therefore, G-5 must in-

clude the preparation of detailed descriptions of the manner in which the job

aids will be evaluated as part of the overall evaluation of the delivered aero-

space system. The evaluation method must be prepared in concert with early

plans for overall system development at the system level.

Although the "GO" model does not indicate one, it must be assumed that

activities G-5 and G-9 will be bridged by a phi function that will oversee ac-

tivities G-8, 9, i0, and ii, for the purpose of ensuring that their end prod-

ucts will be delivered on time and that they will be satisfactory. This means

that interim products of these four activities must be evaluated on a regular

basis, and that schedules must be followed closely, probably with the use of

PERT techniques. It also means that there must be the capability to determine

and provide for corrective action when one of the monitored activities demon-

strates incipient failure. Given an adequate implementation of a phi function,

the business of activity G-17 is relatively straightforward. Activity G-17 in

this case will undertake to integrate the end products of G-8 through G-II,

to test the integrated end products, to make modifications as required, and to

deliver a complete crew package at the level of development required in Func-

tion G.

Activities G-6 and G-18 (Local)

Activity G-6 does for the development of the local segment what activity

G-5 does for the remote. It provides for the makeup of jobs for crew members

and it develops the requirement statements for selection, training, job-aiding,

and performance maintenance activities which follow it (G-1 2 through G-1 5).
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In the case of activity G-6, however, the makeup task is a much more taxing

one than is the similar task for the remote segment. In the case of the local

segment, the makeup of jobs for crew members must be done within a specific

crew size. Provisions for redundant personnel when needed and for the full

use of available time without conflicting demands introduce additional difficul-

ties into the process of making up the list of tasks that will constitute a job

for any crew member. Especially is this a complex process in the case of

those aerospace systems where man must operate as a crew member on a

24-hour per day basis over a period of a day or more.

Activities G-14 and G-15, which are follow-on activities to G-6, are con-

cerned with end products of the development cycle, job aids, and materials

for use on the job to maintain human performance. Therefore, weight, power,

and volume constraints must be placed upon these activities and this, too,

must be accomplished by activity G-6.

Activity G-18 is analogous to G-17. It is concerned, however, with the

evaluation of personnel products for the local segment.

Crew Package Fabrication (Training)

Activities H-5 and H- 13 (Remote)

Activities H-6 and H-14 (Local)

Activity H-5 is the lead technical management activity for the crew pack-

age for the remote segment, and H-6 is the lead activity for the local segment.

We will discuss these two activities simultaneously. Basically, they must

provide the orders to initiate and guide the training activities H-8 and H-10,

and the activities concerned with the fabrication of materials for maintaining

human performance on the job, H-9 and H-11. The specifications must, of

course, include identification of the manner in which the outputs of these

follow-on activities will be evaluated. H-5 and H-6, however, have two other

objectives, which are not technical management. These activities, as shown

in the model, also select the candidates for training employing the selection

materials developed in Function G, and they select and train instructors em-

ploying the materials developed in Function G. An alternative to considering
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these functions as part of the crew package technical management group would
be to call them out as separate activities under the control of the crew pack-

age activities H-5 and H-6. However, inasmuch as the implementation of
these functions is fully provided for by the material preparcd in Function G,
such a callout would add further detail to the model simply for the purpose of
identifying two rather straightforward types of activities.

It should be assumed that a phi function must be employed to cover the
hiatus between H-5 and H-13, and that another must be employed to cover the
hiatus between H-6 and H-14. If this is assumed, H-13 and H-14 are primar-

ily evaluation and integration activities. However, the evaluation and integra-
tion that is performed in these functions is of signal importance, for it is the
first step toward the installation and delivery of the complete operational sys-

tem that is the output of the development cycle. Thus, H-13 integrates and
demonstrates the remote crew package as a total package and must provide
for the correction of any deficiency detected in the evaluation. Similarly,
H-14 integrates and demonstrates the crew package for the local segment.
The demonstration of the crew package is made under ideal environmental
conditions, however. Joint testing of the crew package and the Human Support

System is not attempted until activity H-16.
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XII. THE DEVELOPMENT OF INSTRUMENTS

FOR SELECTING TRAINEES

Activity Group Requirements

and General Considerations

The purpose of this activity is to prepare the selection instruments needed

to choose the personnel who will be processed through the training program

in Function H of the model. The training program must provide these chosen

personnel with the human performance capabilities needed in the operational

system. Furthermore, the training program should accomplish this task on

time and within allocated resources. Therefore, the selection instruments

must be capable of identifying those people who can be trained quickly and

easily to perform their assigned jobs.

Selection instruments are also used to identify candidates for training who

have certain job performance capabilities already in their repertoire. The

selection of candidates who have some of the capabilities required on the job

reduces requirements for training so long as all selected candidates have the

same basic repertoire. Such capabilities are different than those capabilities

which are not job performance ........ t......r_ _,_+,_ p_nvide the base

upon which training builds.

A third requirement for selection instruments derives from considera-

tion of the personnel support systems. In general, the problems of devising

a personnel support system for the flight segment of an aerospace system be-

come insurmountable if the crew members to be supported suffer at the start

from bad health. To preclude placing unduly severe requirements upon the

personnel support system, personnel selection must be responsive to reason-

able demands by designers for crew members with certain physiological and

anthropometric characteristics.

The extent to which selection instruments are capable of meeting the

three needs identified above, is a measure of their goodness. Notice that it

was no___tsaid that the goodness of the selection instruments is measured by
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how similar the basic performance capabilities of the chosen personnel are

to those performance capabilities with which they will be provided by the train-

ing program. Indeed, it is sometimes advisable to steer clear of people who

have similar capabilities to those needed, but not quite what is needed. As an

example, the Air Force has found in their flight training programs that those

people who have learned to fly on their own prior to joining the Air Force are

usually more difficult to train than those people who have done no previous

flying. The point is that the only correct measure of the goodness of the per-

sonnel chosen for training is the extent to which the capabilities they start

with form a basis for a low-cost, timely, and effective training program and

Human Support System. No other measure is appropriate.

Selection instruments are usually tests of one sort or another. The scores

achieved on such tests, of course, are intended to represent the candidate

trainees' basic performance capabilities, potentials, and health. Kinds of

tests which are often central to trainee selection are:

1. Age, weight and physical stature tests;

2. Physical health tests;

3. Mental and emotional health tests;

4. Tests of technical training;

5. Basic capability tests.

Of the three methods of obtaining human performance capabilities which

are built into the development cycle model (training, job aids, and selection),

the most expensive is usually training. Training can be expensive in terms

of time as well as in terms of dollars. Selection and training are complemen-

tary ways of achieving performance. Once it is determined what performance

is desired of man, one must ask how such a man can be provided. If a man

can be found who has all of the necessary attributes, then training is unneces-

sary. However, for aerospace systems it is unlikely that individuals with the

necessary skills and experience can be found. If they could be found, it would

be through the use of a selection device.

This activity has the potential for a considerable effect on the quality of the

operational system and the cost and probability of success of the development
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cycle. If the activity is properly carried out, then men can be selected who

wiil complete the training program within costs, in the time allotted, and who

will have those performance capabilities needed in the operational system. On

the other hand, if the selection instruments make a bad choice of trainees,

then either the costs of training will increase, the time for training will in-

crease, or some performance capabilities will be missing in the final crew.

In such a case as this when the selection instruments have no___tdone their job,

several obvious things can sometimes be done to regain the performance cap-

abilities that are in danger of being lost.

1. Revise the selection instruments and reselect;

2. Revise the training program to accommodate the individuals selected;

3. Prolong the training of the individuals selected.

Sometimes it may even be more advantageous to suffer the performance loss

and the resulting lower operational system quality than to revise selection or

training. The choice among these alternatives would be made in terms of the

most desirable trades between cost, quality, and probability of development

success.

To avoid a catastrophic failure of the selection instruments, it is desirable

to build a test of the adequacy of the instruments into their development pro-

gram. The difficultyin so doing arises from the difficultiesin providing a

practical criterion for measuring the success or failure of the test itself.

Relationship of the Activity Group

to the Development Cycle Model

Instruments for selecting men to be trained as crew members of the oper-

ational system are produced in activity G-If for the remote crew, and in G-12

for the local crew. Consideration of the crew selection problem begins long

before Function G, however. In activities D-4 and D-7 selection problems are

anticipated in order to develop confidence that the recommended allocations

of operator performance and crew size may be stabilized. Subsequent activ-

ities in Functions E and F develop further information bearing upon the problem
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of trainee selection. The relationships among activities in the line of develop-

ment concerned with the local segment crew selection is shown in Figure 13.

The discussion which follows will describe the sequence of events depicted in

this figure. In examining the figure, it should be kept in mind that formal

rules for the development of functional designs have been violated in the inter-

est of showing a concise picture of the relationships. Technical management

activities, for example, are ignored. A similar diagram could be drawn for

the sequence of activities concerned with developing selection instruments for

the remote crew.

It can be seen from examination of Figure 13 that at least six activities

are concerned with the development of requirements for human performance

in the local segment. These are activities D-7, E-9, E-10, E-12, F-8, and

F-10. Taken together, these activities identify all of the operator and main-

tenance technician performance required in the local segment of the operational

aerospace system and in the Human Support System. In each of these activ-

ities it is necessary to look ahead at the selection problems engendered by the

recommendations made in their outputs. This looking ahead is required to

preclude the generation of an unsolvable selection problem. Each time there

is a "look ahead, " information previously developed with respect to the selec-

tion problem must be considered and new and more detailed information must

be developed. In this manner, through Functions D, E, and F there will ac-

cumulate a fair amount of information about the selection problem and ways

in which it may be solved. This accumulation of information will be available

in Function G, but it will be used in G primarily as background information.

It will not constrain selection activities in Function G to the use of solutions

previously identified in the earlier functions.

In Function G, activity G-6 will employ the accumulated data with respect

to the selection problem as one important data base for the identification of the

specific job performances that will be assigned to each crew member and for

the identification of the manner in which each job performance capability will

be obtained -- that is, by selection, training, or job-aiding. In the output of

activity G-6, the job performances to be carried out by each crew member

will be identified in detail with specific criteria for evaluating each job
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performance. The output of G-6 will also identify for each crew member

those job performance capabilities that must be obtained by means of selection.

This will be an input directly relevant to G-12, where training instruments

are produced. In order to arrive at a firm decision with respect to training

and job-aiding, it will have been necessary in G-6 to estimate the cost of

training and job-aiding. To estimate such costs, it will have been necessary

to have made assumptions even previously about the initial repertoire of can-

didate crew members, for the initial repertoire will have an important influ-

ence on the necessary length of training and job aid complexity. The final

determination of what will be trained and job-aided will therefore be accom-

panied by requirements for selection in terms of an initial non-job repertoire

for each crew member.

It was earlier noted that selection must take into account not only the

initial repertoire of non-job capabilities and certain job capabilities, but also

physiological, psychological, and anthropometric characteristics which must

be satisfied in order to minimize the problems associated with Human Support

System development. It can be seen in Figure 13 that assumed criteria of this

type are introduced into the flow of activities in the output of activity E-12.

The assumptions, as corrected in the course of intervening activities, will

be presented to activity G-12 in the output of G-6.

In response to the requirements of activity G-6, G-12 will produce selec-

tion instruments for the local crew. These will be adjusted and integrated

with the outputs of G-13, G-14, and G-15 in the crew package activity G-18.

The selection instruments will be employed in activity H-6 to select the crew

members to be trained in activity H-10.

Resources Needed

Within psychology there is a well-developed subdiscipline concerned with

problems of personnel selection. Professionals in this subdiscipline should

always be employed for the purpose of developing selection instruments in the

course of aerospace system development. To do otherwise, is to ignore an
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enormous body of carefully developed scientific information germane to

personnel selection.

The specific personnel employed in activities G-II and G-12 should

probably be brought into the development cycle much earlier. Ideally, key

specialists in personnel selection would assist in activities D-4 and D-7 and

in all of the subsequent activities related to the identification of crew perfor-

mance in Functions E and F. (See Figure 13. ) Certainly, the key selection

specialists must participate in activities G-5 and G-6 where the requirements

for activities G-f1 and G-12 are prepared. To prepare the requirements for

G-If and G-12 requires capability to anticipate whether or not requirements

are possible to satisfy, and thus requires complete information about the

state of the art of personnel selection.

Ordinarily, the specialists who implement activities G-11 and G-12 will

not require complex equipments for the preparation of the selection instru-

ments. Where equipments are required, simple devices will ordinarily suf-

fice. However, in order to evaluate the selection instruments produced, it

will be necessary to employ "subjects" representative of the population of

candidates for crew training, and it may be necessary to employ simulators

and mock-ups in test situations similar to the test situations necessary for

evaluating job aids and trainees.

The Development and Fabrication

of Instruments for Selecting Trainees

Activity G- 11 (Remote)

This activity is concerned with trainee selection for the remote crew.

Its output will be the instruments for selecting candidates for training. The

output package must include instructions for use of the instruments and data

to demonstrate that the selection instruments are satisfactory. The input to

G-II will derive from G-5, a crew package technical management activity.

The input will identify the job performances that must be in the repertoire of

selected candidates, requirements for general aptitude and background capa-

bilities, and for physiological and psychological attributes.
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Activity G- 12 (Local)

Like activity G-11 this activity is concerned with trainee selection. The

output includes everything necessary to carry out the process of selecting

candidates for training for the local crew. The package of materials will

thus include selection instruments and instructions for their use. The output

should also include data to demonstrate that the selection instruments achieve

their objectives when used as directed. The input to G-12 derives from G-6.

It is similar to the input to G-11 which derives from G-5.

Discussion

Of all of the activities related to personnel products in an aerospace sys-

tem development cycle, those concerned with personnel selection probably

rest upon the most extensive base of scientific information and professional

practice. The armed services, including especially the old Army Air Corps,

early recognized the importance of personnel selection. In the case of the

Air Corps and, later, the Air Force, there was significant payoff from the

very beginning when scientific selection procedures were employed for the

purpose of identifying promising candidates for aerospace system training.

As one result of this recognized payoff, research and development of selec-

tion procedures for aerospace crews has been well supported for over two

decades. It would be inappropriate here to attempt to encapsulate the exten-

sive literature that has been developed in this area.

What will be useful here is a discussion of the special way in which selec-

tion of crew members is determined by the three principal facts of the re-

quirement statement which initiates activity G- II or G- 12. One of these is a

requirement thatpersonnel be selected on the basis of mental health, physical

health, and anthropometric characteristics such that the design of an effective

Human Support System is not made unduly difficult. The problems associated

with Human Support System design are specifically discussed in Chapter IX.

In that chapter, the Human Support System is defined as a system which pro-

vides conditions such that there is no unexpected loss of reliability of human

performance because of degraded environmental conditions. Thus, it is

190



recognized that reliability predictions for the performance of specific tasks

by b2,mans are valid only when certain (stated} environmental conditions ob-

tain. (The expected reliability of a resistor is degraded under very high

temperature conditions; so is the expected reliability of a man performing a

specific task. } A second objective of the Human Support System is to provide

for the long-term health and sanity of crew members. Thus, society demands

that the well-being of aerospace crew members be preserved outside of the

job situation. When we are concerned with sustaining reliable performance

we are, of course, concerned with reliable performance inside the job situ-

ation.

To meet the objectives of the Human Support System; we must commonly

provide for temperature control, noise control, vibration control, and so on.

We must also often provide for nutrition, breathing atmosphere, waste man-

agement, water management, and so on. Thus, the concept of a Human Sup-

port System encompasses environmental control systems and life support sys-

tems. But it encompasses more. It includes also providing for rest and

recreation, for personal hygiene, for physiological and psychological moni-

toring, and for physical and mental health maintenance. It can be seen, then,

that the problems of designing an effective Human Support System may be

greatly increased if support must be provided for personnel with degraded

physical health or for persons with degraded mental health. It can also be

seen that the provisioning of sleeping space, of nutritional supplies, of activ-

ity areas, and so on can be complicated if crew members of unusual anthro-

pometric dimensions are accepted. What is necessary is that explicit assump-

tions be made in designing the Human Support System with respect to the basic

physiological, psychological, and anthropometric characteristics of the crew

members to be supported. These assumptions may be stated, for example,

in terms of probability of cardiovascular disease leading to disability to per-

form, probability of behavioral maladjustment leading to performance degra-

dation, and maximum daily caloric intake. On the other hand, requirements

may be stated in terms of the measurements to be taken and the scores to be

achieved to certify a candidate as free from cardiovascular disease, in terms

of the tests and test scores by which freedom from mental illness may be
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certified, and in terms of body dimensions. In the case of either set of ex-

amples, a basis is provided for stating criteria by which candidates should

be selected for training. In the former case, a good deal of translation is

required before practical selection instruments and selection criteria may be

set down, whereas in the latter case relatively littlework needs to be done

to achieve practical selection instruments. It is not of great importance

where the translation is done, whether in association with Human Support

System development or in activities G-II and G-12. What is important is

that the selection criteria which derive from consideration of the Human Sup-

port System be justifiable in terms of the effects to be achieved upon Human

Support System design and operation. Arbitrary selection requirements for

trainees in "good" mental and physical health and of "normal" body dimen-

sions should not be employed simply because "it is better to have a man of

good health than a man of poor health. " While such generalizations may be

true, the effort which can be justified in selecting a man of good health can-

not be determined on the basis of such a homespun rationale. If the general

assertion is true, the reason for it can be found, and if the reason for it is

stated explicitly then there is a basis for deciding when selection criteria are

appropriate. There is then also a basis for determining what proportion of

system development resources to expend for the purpose of carrying out the

selection process.

A similar argument for relating selection criteria to specific effects in

terms of elements of system quality and cost can be made in the case of re-

quirements for selection on the basis of job performance capability. Selec-

tion of crew members who can already perform some of the tasks specified

in their job descriptions is a legitimate way to reduce training time and

training cost. Selection for such capabilities is quite straightforward. What

is required is that the needed job performance capability be identified in terms

of the way in which performance will be evaluated. Selection is accomplished

then simply by applying the specified evaluation tests. To avoid the common-

est of errors in this regard, it is necessary that the manner of testing and the

target test scores be derived explicitly and systematically in the activities

which precede G-11 and G-12 and which are focused upon identifying the oper-

ator and maintenance technician tasks to be carried out by crew members in
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the operational situation. It is desired that the original specification of the
tasks to be allocated to crew members be in terms of the output states to be
achieved by human performance and in terms of the input states to the human
performance. Such specifications are a basis for evaluation and should be

preserved and employed without unnecessary compromise in the preparation
of that part of the selection instrument for a crew member which is designed
to test him for specific job performance capabilities.

The third part of the requirement statement for the development of selec-

tion instruments is concerned with avoiding undue training cost which would

result if the initialrepertoire of the trainees were too elementary, or ifthe

basic learning capability of the trainees were too poor. The manner of se-

lecting for the initialrepertoire is essentially to test for specified perfor-

mance capabilities by performance tests. The performance capabilities of

interest will be those it is wished to assume in the preparation of the training

materials. In general, when trainees are selected for an initialrepertoire

of performance which minimizes training requirements, difficultyin finding

appropriate candidates is increased. Therefore, there is a trade-off consid-

eration in which it is desired to find an initialrepertoire that will permit

finding sufficient numbers of candidates and which will also avoid an unduly

lengthy or costly training program.

It is the satisfaction of the requirement for "trainable" candidates that

has been the subject of much research and controversy. What is needed is

selection criteria that will sort out candidates who can most readily be

trained reliably to carry out required operator and maintenance technician

performances. For a specific aerospace system development cycle, the num-

ber of candidates to be selected typically will not be so great that extensive

validation of highly sophisticated selection instruments for "trainability" can

be justified -- except in the case of widely used aircraft systems. Therefore,

the greatest difficultyis associated with the development of selection criteria

of this kind in which confidence can be placed. Reliance must be placed upon

evidence developed in previous similar situations. In good part, the difficulty

of developing the part of the total selection instrument package which deals

with selection for "trainability" will be the most difficultwhen the system
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under consideration departs significantly from previous aerospace system

concepts.
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XIII. THE DESIGN AND FABRICATION OF JOB AIDS

Activity Group Requirements

And General Considerations

Job aids are end products of a system development cycle; they are deliv-

ered and installed along with the other things which make up an operational

system. When job aids appear as end products, it is because they are needed

to foster operator and maintenance performance in the operational situation.

Thus the key requirement for job aids is stated in job performance terms, and

job aids are ultimately evaluated by determining whether or not they do indeed

support job performance with the required reliability.

An example of a job aid is a troubleshooting chart for a piece of hardware.

If a crew member is required to have the capability of repairing a piece of

hardware, it may be both cheaper and more reliable to use a troubleshooting

chart to provide this capability rather than train it into his repertoire. A job

aid can be a sheet of paper like the troubleshooting chart, it can be a technical

manual, or it can be a complicated audiovisual device. But whatever form a

job aid takes, its purpose is to provide a particular performance capability to

some crew member, and its goodness is judged by the extent to which it

achieves this end.

Occasionally it is difficult to determine whether or not a given personnel

product is a job, a tool, a piece of maintenance equipment, or even a product

of the human engineering of a man-machine interface. It seems that no defini-

tion can be given for a job aid which clearly discriminates in all cases. In

general, however, it is satisfactory to say that a job aid is any product of a

system development cycle which provides the stimulus conditions necessary to

guide required human performance in the job situation. Performance which is

job-aided is complemeritary to performance in the learned repertoire of a crew

member. Within the present state of the art it thus appears that there are only

two ways to obtain job performance: (1) by using the learned repertoire, and

(2) by providing stimulus materials for use on the job which have the capability

of eliciting required job performance. Job aids may be prepared in a wide
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variety of formats. Printed job aids are frequently used. Audiovisual and

computer-supported job aids are becoming more popular as equipment technol-

ogy improves.

In the course of system development it must be decided what human per-

formances necessary for system operation and maintenance will be job-aided,
and which will be obtained by selection or training. Allocation is normally
made on the basis of cost and quality considerations. When used judiciously,

job aids can have quality and cost advantages. Thus, job aids may contribute

to quality by ensuring reliability of performance where reliability cannot be
assured by means of training. They may also permit the use of human per-
formance where it would not otherwise be possible because of the limits of the

learning capacity of crew members. For example, job aids may provide crew
members with large stores of data which cannot be committed to memory but
which must be employed to enable performance. In the development of job
aids, the capabilities of the very best engineers and technicians may be utilized
so that the resulting job aid can support high-level performance on the part of
far less able personnel. On the cost side, job aids may have an advantage by
virtue of the fact that the use of a job aid may significantly reduce training
requirements. The use of job aids may also reduce requirements for materials
to be produced to maintain human performance in the job situation. Where
changes in the required performance of operators and maintenance technicians

can be anticipated during the operational life of the system, the use of job aids

may be preferred because of the ease and lower cost with which changes are
made as compared with effecting changes in repertorial performance.

Job aids tend to be used heavily in support of maintenance performance
because of the wide variety of maintenance performance capabilities that may
be required of a maintenance technician, and because of the large amounts of
data required to support maintenance performance. They are less often used
to support operator performance because operator performance is more

frequently time-constrained such that there is no time to refer to a job aid
during the course of performance. In general, job aids have not been useful

for supporting motor performance.
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Job aids are important both in the remote segment and the local segment

of an aerospace system. In the local segment they must be designed within
weight, power, volume constraints which donot apply so strictly to the remote

segment. They may bc especially useh!l in the local segment as a way of
extending the capabilities of a small crew. For lengthy excursions they may
be useful to provide support for little used performance capabilities.

Relationship of the Group to the
Development Cycle Model

There are two lines of development of job aids in the aerospace develop-
ment cycle model: one for job aids to be used in the local segment, and one
for job aids to be used in the remote segment. These lines of development do
not, for the most part, interact with each other. Quite independent performance

capabilities are required within the separate segments. Despite the fact that
there will be very little interaction between these two lines of development,
they are quite similar with respect to the internal sequence of events. In view
of these similarities, we will discuss only the sequence of events related to
the production of job aids to support performance in the local segment.

The only job-aid activity in the local segment which is explicitly called out
on the development cycle model is box G-15. This box falls within that part of

the development cycle where final preparation for fabrication takes place

(Function G). Job aids are produced here, in advance of the main fabrication

effort, because they are needed in the crew training program in Function H.

Although box G-15 is the only function in the model which explicitly refers

to job aids, there are, in fact, many other activities which relate to job aid

production. In the model, these other activities are primarily concerned with

outputs which are not job aid outputs, however. The important activities in

which job aid development takes place, outside of activity G-15, are identified

inFigure 14. This figure traces the sequence of events from activity D-7,

where job aids are first considered in Phase II, through Functions E and

F to Function G and then through Function H. The information given in the

figure emphasizes job-aid related attributes of the output states of tile functions
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shown. Thus, the identification of the output states in the figure is not com-
plete; it is biased to present important job aid information. In order to show
the sequence of events related to job aid development with a minimum amount
of clutter, the fi___re shows direct relationships between boxes which are not

truly directly related. Thus, the figure shows the output of D-7 as an input to
E-4, whereas in the overall model there are many intervening functions. To
show the intervening f,mctions in this fignarewould obscure the picture of job

aid development that it is desired to present. It should be kept in mind that

the figure violates the model but that it does so for good purposes.

As shown in the figure, job aid development in Phase II begins in activity

D-7, where it must be shown that the recommended allocation of operator

functions will not create design problems when activity G-15 is reached. In

order to make this kind of demonstration, there must be fairly detailed predic-

tion of the types of job aids that will be required to complete system design

and fabrication. Prediction must be detailed enough, for example, to permit

an estimate of weight, power, and volume allocations which should be made to

allow for the job-aids part of the personnel products package. Consideration

of job aids in activity D-7 thus encompasses all of the activities shown in the

figure between D-7 and G-15. However, it does this in a predictive and repre-

sentative manner, on the basis of less information and in less time than will

be available for the accomplishment of the activities themselves,

In Function E, more detailed anticipatory study of the job aids required to

support first-order maintenance performance will take place (activities E-9,

E-10, and E-12). In each case, the job-aid planning that is done is for the

purpose of generating confidence that it is safe to proceed with design. The

planning is not for the purpose of constraining .the decisions that will be made

in activity G-15. Thus, in the figure it is noted that the job aid plans are

representative. These activities, E-9, E-10, and E-12 are bounded by E-4

and E-14 where the personnel product package as a whole is considered.

Activity E-4 sets forth requirements, and E-14 considers, among other things,

the job aid implications for the personnel package as a whole.

In similar manner, activities F-8 and F-10 which are concerned with

second-order and third-order maintenance are bounded by activities F-4 and
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F-12. F-4 sets forth requirements and F-12 integrates the outputs of the

intervening personnel package activities. F-8 and F-10 set forth representa-

tive plans for handling the job-aid problems engendered by second- and third-

order maintenance considerations and demonstrate that the problems can be

solved within constraints.

G-6, which immediately precedes G-15, plays a key role with respect to

job aids design and fabrication. It is in G-6 that position definitions are finally

stabilized and it is within G-6 that the determination is made for each position

as to which elements of performance will be obtained by means of job-aiding,

which by training, and which by selection. In order to make the trade-off

among the job aid, selection, and training methods, Cost and Quality implica-

tions of alternative approaches must be made. To make such estimates

requires capabilities and activities very similar to those that will be carried

out in G-15. Thus, possible designs of physical job aids must be considered

in G-6 and estimates must be made of the Quality and Cost implications of

such representative job aids.

As shown in the figure, G-15 delivers job aids which will, in the real

world of system development, be required to undergo several adjustments

before they finally are delivered and installed as part of the operational sys-

tem. The figure shows the key activities in which adjustments may take place.

They are activity G-18 which is the personnel products package integration

activity in Function G, H-10 where training involving the use of job aids may

reveal shortcomings, and finally activities H-16, H-18, H-19, and H-20,

which are concerned in sequence with the assembly, installation, and test,

first of the remote segment and then of the total system.

Estimates of what is required to produce job aids for the remote segment

(activity G-8) may also be made on the basis of the information presented

below for activity G-15. Those differences between G-8 and G-15 which do

present themselves are pointed out within the description of G-15.

Resources

The crew of personnel required to carry out the job-aids fabrication task

(activity G-15) may begin to form very near the beginning of the design phase.
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Thus, early in design, when the functional design of the prime system is under-
taken, there will be need to foresee requirements for job aids. There will
also be need to estimate weight, power, and volume requirements of job aids
for the local segment, and to present data which show that the job aids problem
that will be engendered by approval of the recommended functional design will
be a solvable one (activity D-7). The job aids experts who assist in these
projections would next be required to support decisions about the allocation of

functions to maintenance technicians (activity E-9), to assist in the projection
of methods for maintaining operator performance (activity E-10), and to pro-
ject job-aid requirements for supporting operation and maintenance of the
Human Support System (activity E-12). The number of experts required to
support these activities would need to be greater than the number required
during the initial considerations of job-aid requirements (Function D). In fact,

the greatest use of job aids is ordinarily in support of maintenance technician
performance, and in a typical aerospace development cycle, considerable

effort would be required during the process of allocating maintenance techni-
cian performance (activity E-9) to anticipate the job-aid requirements thus
generated. In the next stage of design (the final allocation of means, final
interface design, and completion of the additive set), the anticipation of
requirements for job aids is again of importance, especially for the purpose
of supporting second-and third-order maintenance activities (activities F-8

and F-10). Thus, by the time activity G-15 is initiated, a core crew with
experience in considering job aids will have been formed. This nucleus will
have to be augmented to carry out design, fabrication, and evaluation in activ-

ity G-15, and, in practice, it will not be possible to dismiss the entire crew
upon completion of activity G-15 because it can be anticipated that significant
retrofitting and further development of job aids will be required throughout the
process of system fabrication, installation, and evaluation. In fact, the crew
retained throughout fabrication (Function H) for these purposes may be retained

with little diminishment during the operational phase as well so that subsequent
changes in the system during the operational phase may be reflected in cor-
rected job aids.

The job aids personnel required in the initial personnel products crew
during prime system design should include experts familiar with the variety of
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types of job aids that have been demonstrated to be useful and should include

personnel capable of estimating the cost and time required to design, fabricate

and deliver job aids of all types. The crew should also include personnel

skilled in identifying the kinds of operator and maintenance performances

Which are best promoted by means of job aids. It is best if the personnel with

this capability are also the specialists who are familiar with the state of the

art of job aid techniques. When the design moves into concern with maintenance

technician performance (Functions E and F), the specialist in the field of job-

aiding maintenance performance will be required. This is not to suggest that

such experts are not required earlier. Rather, it is to call attention to the

fact that a proportionately large effort will be required in the job-aiding of

maintenance performance as opposed to operator performances in most sys-

tems. When design and fabrication are undertaken, the job-aid crew must, of

course, be expanded again (Function G) to include detailed design and fabrica-

tion technicians. Also, it will usually be desirable during this phase to employ

the services of a model-shop crew in order that prototype job aids may be

developed and evaluated prior to stabilization of design. During the retrofit

phase the crew will consist mainly of technicians capable of adjusting or

modifying existing job aids. Requirements for overall conceptual design and

inventiveness will be reduced.

Prior to the fabrication phase, equipment to support job-aid activities

(Functions D, E, and F), will usually be restricted to model shop facilities

and modest graphic and reproduction support so that recommended new

approaches to the solution of job-aid problems may be evaluated early enough

to obtain data to support design recommendations. To support activity G-15,

full-scale model shop, graphic arts, and printing facilities will be required.

Electronics fabrication and computer programming capabilities will also very

likely be required for complex aerospace systems. During retrofit activities

facility support will be required for reprogramming of existing job aids.

Design and Fabrication of Job Aids

Activity G-8 (Remote)

The output of this activity is an end product of the development cycle. The

output is all of the job aids necessary to support operator and maintenance
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technician performance in the remote segment. The output must include data
which demonstrate that the job aids do indeed support the performances for

which they were designed. The input to G-8 derives from G-5, a crew package
technical management activity. The input will identify the job performances

which must be supported by job aids, the crew members who will use the job

aids, and any constraints within which the job aids must be designed and

fabricated. These data will be the basis for evaluating the job aids, and they

must therefore also identify the conditions under which the job aids will be

employed in the operational situation.

Activity G-15 (Local)

The output of this activity is a complete set of job aids for use in the local

segment. The output is thus an end product of the development cycle. Not

only must the job aids be delivered, but also data which demonstrate that the

job aids promote the operator maintenance technician performances they were

designed to promote. The conditions under which the delivered job aids will

be evaluated must be identified in the input to G-15, which derives from G-5.

This input will contain all of the types of data contained in the input to G-8.

It will also identify the weight, power, and volume constraints within which

the fabricated job aids must fall.

Discussion

Job aids are produced for both local and remote segments, to support

seven basic classes of performance. These basic performances are:

1. Operator performance;

2. Maintenance of operator pei_formance;

3. Maintenance of prime equipment;

4. Maintenance of maintenance personnel performance;

5. Operation of the support systems;

6. Maintenance of the support systems;

7. Maintenance of maintenance means.
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During activity G-6 (or G-5) all personnel performances are investigated

to find the best way to ensure their implementation (i. e., through personnel

selection, training, or job-aiding}. Functions likely to be assigned to G-15

(or G-8) for job-aid development would, for example, be those which:

. Involve a lengthy process of steps. The number of steps

could be too great to rely on man's memory, especially

if performed infrequently.

2. Involve a host of possible situations each requiring

alternative actions.

3. Require job-aiding to ensure required reliability.

Job aids are sometimes needed for the beginning, middle, and terminal

portions of functions. In other words, they can be used to:

1. Initiate a function only.

2. Provide guidance throughout the function.

3. Provide data for evaluating the output state of the function

for accuracy or timeliness.

Clearly, combinations of these may also be used.

The level of detail of information content of the job aid may vary from a

simple reminder to perform a task the person is already trained to do to a

complete set of well-defined procedures, with supporting data, the perfor-

mance of which requires little or no prior training.

Practically all of the various ways of developing job aids require that

functions to be job-aided first be broken down into performance elements or

steps. Then information needs are derived which are important to success-

fully carry out the steps. Following these comes a consideration of: media

and packaging by which data should be presented, job-aid design, and,

finally, the production, testing, and delivery of the aid itself.
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Using these guidelines, a representative method of developing job aids is
presented below. The adoption of a specific process for providing job aids
must await the constraints of the -_ *" • 1e_r_cu_ar system under development.
Therefore, the method detailed below may not be universally applicable.

The description of the method is keyed to Figure 15. Each box in
Figure 15 represents a component task of activity G-15. Inputs and outputs

which occur between these tasks and other activities of the development cycle
are shown to reflect overall interaction during the job-aid development. For
simplicity of presentation, the detailed descriptions of inputs and outputs are
explained,in the text, while only "placeholders" for such are on the figure.

Since the same steps in the method would be necessary for both remote
and local segment job aids, only one thread of development is shown rather
than presenting one parallel process for each segment. The differences
between segments will be reflected in the text.

In following the typical sequence of events within activity G-15, it must be
remembered that there will be a crew integration activity in parallel. Thus,
in the case of a real development cycle there would be transition activity
between G-6 and G-18 that would oversee the integration of activities G-12,
G-13, G-14, and G-15 and that would act to mediate among them in cases of

conflict. In Figure 15, inputs from parallel system products and hardware
activities are shown as well as outputs to parallel activities. Such inputs and
o_]tputswould, of course, be mediated by appropriate higher levels of segment
and system integration.

The following is a representative approach to job-aid development.

Task i. Determine input information requirements, nThe purpose of the

first task is to determine the information which must be provided by the job

aids to the system personnel. The first step would be to break down the func-

tions identified in the input from G-6 into performance elements. This break-

down need only be carried far enough to identify the specific data required by

man to yield the output of each function assigned to him. Then the data needs

would be documented for each step in the function.
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In order to perform this function breakdown and information identification,

several inputs are required. The inputs, their sources, and the reasons for

their need are described in Table 5.

On the basis of %he information analyses and the job requirements, deci-

sion should be made for each element of performance as to whether the perfor-

mance will permit "shortcutting. " A shortcut job aid is one which enables the

user to deliver the output of his assigned function without going through all of

the intermediate steps. For example, a summary table of the trouble loca-

tions within a piece of equipment with entry by malfunction indication shortcuts

the performance of troubleshooting.

Task 2. Define content and modalities. -- The objective of this task is to

determine the content type of the information which should be presented to

system personnel, and the sensory receptor(s) to which the information should

be directed.

By "content type" is meant whether the data should be in the form of

prose, procedures (step by step), tables, diagrams, pictures, symbols, or

combinations. The concern for sensory receptors is with reference to whether

man should receive the information using visual, aural, or tactile senses, or

some combination of these.

There is an interaction between content and sense modality, and for this

reason they are considered together. It is obvious that tables, diagrams and

pictures must be presented via the visual mode. Prose and procedural infor-

mation may be encoded for receipt by any one of the three modes.

The classification of information into content types should be fairly

straightforward. Certain data, by their very nature, dictate the general

format which is appropriate. For instance, a wiring diagram is a conven-

tional device for identifying the location of wires, busses, etc. If maintenance

personnel need such location data, then the wiring diagram as a content type

would probably be very appropriate.
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TABLE 5. INPUT REQUIREMENTS FOR TASK 1

J

INPUT SOURCE USE

1. Type of function (e.g., operator, Activity G- 6 Allows grouping functionB by type,

2.

3.

4,

5,

6,

7.

8.

9.

10.

1L

12.

maintenance of prime equipment,

etc. )

Function identity symbol (e. g.,

No. 18)

Output of function (required state

of things when function c_tnpleted)

Required probability that function

output will be achieved each time

performed.

Acceptable tolerance within which

output may vary as regards

accuracy.

Acceptable tolerance limits in terms

of time taken to perform function.

Frequency with which the function

output must be realized per mission/

unit time/life of operational system.

input to functions in terms of data and

physical conditions which initiate its

performance

Person who is to perform function,

and his position (title).

Description of hardware to level of de-

tail depending on how it is interfaced

with (e.g., operation or maintenance)

in terms of controls, displays, access

to and operation of.

Description of tool (s) man will use to

perform functions in terms of name

and use.

Description of function performed by G-6

person just before and immediately

following the one to be job-aided.

Activity G- 6

Activity G- 6

Activity G- 6

Activity G- 6

Activity G- 6

Activity G- 6

Activity G- 6

Activity G- 6

Prime Equipment

E-IIo F-9

E-I1, F-9

Purely for "keeping track" of

function.

Provides the requirement for job-aid

development.

Qualifies the requirement for job aids.

Qualifies the requirement for job aids.

Qualifies the requirement for job aids,

Qualifies the requirement for job aids.

Provides a "starting signal" to person

and shows limits on his input informa-

tion for beginning task.

Satisfies need to attach function bresk-

down to personnel by name or position.

Allows expression of function break-

down since almost every step will

refer to equipment man interfaces

with.

As above, allows more information by

which to express function breakdown.

Provides a perspective to Task I per-

sormel by understanding the physical

and mental "set" of the system per-

sonnel who will perform the aided

task.
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The end products of Task 2 will be a documented mating of content type
and modality for each function or step within functions, as appropriate.

Where clear preferences cannot be determined, alternatives should be given.

Task 3. Group-aided performances by media. --The purpose of Task 3 is

to select job-aid media and job-aid end items. Representative media grouped

by modality are illustrated in Table 6.

Up to this point, the performances to be job-aided will have been consid-

ered separately (except for estimates). The performances must next be

grouped such that each group corresponds to a job-aid end item. It is the end

items which use up the weight, power, and volume budgets and grouping must

take the allocated budget into account. For the local segment, this will mean

that care must be taken to consolidate performances in groups to minimize

the number of job aids required.

Task 4. Prepare data and select .job aids. raThe type of presentation

(i. e. content type), modality, medium, and end items for each aided function

will have been chosen in earlier tasks. This task is devoted to the prepara-

tion of the data which the aid is to present and the selection of off-the-shelf

aids where such exist. Detailed designs of special aids is also an output of

Task 4.

Preparation of the text for the job aids is fairly straightforward but

requires an exchange with G-12. Activity G-12 is concerned with the develop-

ment of instruments for selecting trainees. On the one hand, trainees should

be selected in order to minimize requirements for training in the use of job

aids (e. g., many job aids cannot be employed with illiterate crew members).

On the other hand, job aids must be developed with full recognition of the

selected baseline repertoire of crew members. Virtually simultaneously,

consideration must be given to training requirements which derive from the

planned use of job aids. Whenever a job aid is introduced, trainees must

ordinarily be taught when to use it and how to use it. Thus, among selection

training and job aids, there is a continuing trade-off exercise so that none of

the three becomes costly or difficult.
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TABLE 6. REPRESENTATIVE TYPES OF JOB-AID MEDIA

GROUPED BY MODALITY EMPLOYED

VISUAL

Displays
Manuals and checklists
Card file

Opaque material and projector
Transparencies and projector
Slides (e.g., 35mm, lantern) and projector

Strip film and projector
Motion pictures and projector

TV receiver and video tape
Computer printout
Charts (e. g., flip, solid)

Equipment plates

AUDITORY

Headphone/speaker and player (record, tape, etc.)
Voice

Audio portion of TV

Audio portion of motion picture

TACTUAL tVibratory devices

Table 7, below, exemplifies one way of presenting the output of Task 3.

The information developed in Task 3 is presented in Columns 5, 6, and 7.

TABLE 7. REPRESENTATIVE FORMAT FOR TASK 3 OUTPUT

1 2 3 4

Function Type ModalityFunction

[dentity

No. 167 Operator

Content

Type

Procedure Visual

5 6 7

Alternative

Media for
Job Aids

(a) Face-

plate

(b) Check
list

Preferred

Medium

(a) Face-

plate

End

Item

Faceplate

incorpora-

ting Func-
tion 173
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A major difference between the remote and local segments with respect

to job-aid treatment appears when actual job aids are selected and designed.

The local segment will levy more stringent constraints on the a!!owab!e

weight, power, and volume of the job-aid package. Of course, both segments

will enforce a dollar budget constraint for development costs.

Task 5. Produce prototype aids, test plans. --The output of Task 5 will

be a prototype set of all job aids and plans for testing them.

Using the output of Task 4, prototypes will be procured from manufac-

turers for use as is, or procured and modified to meet specifications;

manufactured from design using standard parts; produced, if software, as

prototype copy.

On the basis of G-6 inputs, plans will be produced for experimentally

testing the capabilities of job aids to achieve the required output states of

functions within desired accuracy and time limits. Experiments must be

carefully designed to allow conclusions to be made with high confidence that

the prototype aids meet all job-support specifications or that they do not.

An input is necessary from G-12--the updated personnel selection criteria

to be used. This will allow provisions in the plan for choosing subjects to test

the utility of job aids. Other inputs are needed from G-!3mdescriptions of the

training equipment and facilities which will be available. The experimental

design should specify the results required, the detailed procedures to be used

for carrying out the experiments, the technique for evaluating the results, and

the facilities needed. The data package to be developed by testing and which

accompanies the job aids as a companion end product of activity G-15, will

contain the results of the experimentation as evidence that job aids will

satisfy the performance requirements.

Therefore, Task 6 will receive as input the prototype set of job aids and

the experimental plans for evaluating their effectiveness.

Task 6. Te___s_tjob aids. --The purpose of this effort is to test the effective-

nes_ of the prototype job aids. If they are acceptable, then they will be

produced during Task 7 in the desired quantities.
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The approach to testing the job aids will be dictated by the experimental

design delivered from Task 5.

Task 6 personnel will probably be able to use the mission simulators and

other training equipment and facilities produced by G-13 for carrying out
research.

The research will have to be preceded by selection and acquisition of

experimental subjects. The subjects will also have to be trained to use the
job aids so that they may be tested in a simulated operational environment.
After experimentation has proven the effectiveness of the job aids, activity
G-13 should be provided with updated data on requirements for training

personnel in the use of the aids.

Task 7. Produce job aids.--This is the final task in the series. The

output of this task is a set of job aids in sufficient quantity for the life of the

operational system plus a data package. The data package would be distrib-

uted to activity G-18 and G-20. One copy of all job aids would be useful in

G-13. At least one copy will be needed in H-10.

The data package portion of the output, as described earlier, would be

in two parts:

1. Data which state that when the job aids are used in the operational

situation, man's performance will yield the required output.

. Information which proves that the job-aid set for the remote and

local segment does not exceed the dollar, weight, power, and volume

budget restrictions.

Even after job aids are produced, completing activity G-15, they will

have to be altered because of subsequent test results. The results are almost

sure to show that some changes in the job aids are necessary.
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XIV. DEVELOPMENT AND FABRICATION OF TRAINING

MATERL&LS, A TRAINING PROGRAM, INSTRUCTOR

SELECTION AND TRAINING MATERIALS, AND

THE TRAINING PLANT

Activity Group Requirements

and General Considerations

Training is one of the three principal methods by which job performance

capability of crew members is obtained. The other two methods are selec-

tion for job performance capability and job-aiding of job performance. Typi-

cally, the burden falls upon training to provide for all of the performance

capabilities that the other two methods do not or cannot provide for. In this

chapter, we consider the activities which develop the set of materials neces-

sary to carry out a training program. Generally, activities in this group are

focused upon providing:

io Training materials, including training devices and printed

materials.

o A training program which outlines the sequence of events

by which training will be accomplished m-_d which provides

tests that may be used to evaluate progress through the

training program.

. Materials for training instructors and instruments for

selecting them.

4. A training plant.

In short, what must be provided includes everything necessary for the

conduct of a training program except:

i. Job aids;

2. Selected candidates for training;

3. Selected and trained instructors.
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Taken together, all of the outputs of the activities in this group must

enable the training program to be carried out within the dollar resources and

time allocated to it in the overall design of the development cycle. The true

test of the training materials takes place in the training program; quality is

determined when the graduate trainees are evaluated in terms of their job

performance capabilities. The activities which provide the materials for the

training program exercise such control over that program that any failure of

graduate trainees will most often be traceable to poor implementation of the

activities described in this chapter.

Relation of Activity Group to

Development Cycle Model

Preparation of a training capability is represented by one activity in each

branch of the development cycle model. One activity provides for the devel-

opmentof a capability for training personnel for the remote segment (G-10),

and one provides for the local segment (G-13). The following discussion will

treat the local segment, activity G-13; in general, the observations apply to

G-10 for the remote segment.

As in the case of the majority of activities in Phases II and III, activity

G-13 has an important antecedent in activity D-7. It is in activity D-7 that

there must be a preview of the training materials and training problems en-

gendered by decisions made there. While no firm decisions with respect to

training materials are made in D-7, data which describe how training might

be carried out are generated and become basic data which must be considered

when carrying out G-13. In Functions E and F, all of the activities which gen-

erate requirements for human performance in the system must also look ahead

to the training materials and training problems that are "bought" along with the

performance allocations. As the total complement of tasks to be assigned to

each crew member is filled up, there must be more and more detailed antici-

patory consideration of the manner in which training will be carried out, and

of the training materials that will be required. By the beginning of Function

G, a fair amount of such data will have been generated. These data will be
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employed as a basis for decisions in activity G-6, which prepares the require-
ment statement for activity G-13. It is in G-6 that firm allocations of perfor-

mance are ir,ade to each crew member, and it is in this activity that decisions

are made with respect to which performances will be obtained by training,
which by selection, and which by job-aiding.

G-13 responds to the requirement statement of G-6; its output is inte-
grated with other interim and final personnel products in activity G-18, which
is, like G-6, a crew package activity. Any adjustment which might be re-
quired in the training materials, the training programs, the instructor selec-
tion training materials, or the training plant should be accomplished within

Function G, for the training materials are needed to carry out training in
Function H. A final adjustment in the training materials and the training
program may be required subsequent to the selection of candidates for train-

ing in activity H-6. Adjustment would be necessary to compensate for differ-

ences between the actual capability of selected trainees and the hoped for
capabilities.

Resources Needed

The variety of personnel skills, of equipment, and of data resources
required to carry out this activity is greater than for any other. In part, this
is so because this is a "fabrication" activity in that it produces "hard" end
products. The end products are, however, interim end products, none of
which appear as components of the delivered operational system.

Five categories of development may be conveniently identified within this
activity. They are:

I. Training program development;
2. Training equipment and materials development;
3. Training evaluation technique development;
4. Instructor capability development;
5. Support and facilities development.
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The following personnel capabilities are needed for the development of

the training program:

1. The capability to use task analysis and sequencing data to specify

task training procedures;

2. The capability to use task performance data to specify the ancillary

knowledge which must be presented;

3. The capability to develop procedures for presenting ancillary know-

ledge;

4. The capability to use operational performance to synthesize tasks

into simulator training procedures;

5. The capability to develop training materials requirements;

6. The capability to decide as to the appropriate use and form of train-

ing materials to achieve specific training goals;

7. The capability to integrate the above into a training program which

specifies curricula and course content for both instruction periods

and laboratory exercises.

The development of the training equipment requires the capabilities to:

1. Analyze operator performance characteristics;

2. Develop specifications for training equipment for task and simulation

training;

3. Develop specifications for support equipment to support the training

equipment;

4. Develop test and checkout procedures for both training and support

equipment;

5. Procure training and support equipment;
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6. Analyze operational environment effects on performance;

7. Analyze the operational input;

8. Develop specifications for the input stimuli for both task and simula-
tion training;

9. Develop methods for generation of the input stimuli;

10. Develop specifications for devices to generate the input stimuli;

11. Procure stimulus input devices.

The development of training evaluation techniques requires the capabil-
ities to:

1. Determine data analysis requirements to compare performance re-
quirements and performance measures;

2. Determine data analysis output required;

3. Select or prepare data analysis and comparison procedures;

4. Specify data input format required by analysis procedures;

5. Arrange for equipment to perform analysis;

6. Specify personnel requirements.

The development of an instructor capability requires the capabilities to:

1. Identify instructor training tasks;
2. Produce instructor selection instruments;

3. Identify ancillary knowledge which the instructor needs to know;

4. Produce training materials;
5. Select candidate instructors;

6. Produce a training program;
7. Train the instructors.
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The development of support and facilities requires the capabilities to:

1. Specify training and support equipment maintenance procedures;

2. Specify maintenance equipment;

3. Specify maintenance personnel requirements;

4. Analyze instructor requirements for the training program, trainee
volume, and use of facilities;

5. Estimate magnitude and type of support services required;

6. Specify administrative support personnel requirements;

7. Analyze facilities use, equipment requirements and characteristics;

8. Estimate facilities requirements;

9. Design facilities;

10. Prepare construction drawings for facilities;

11. Analyze training requirements, procedures and methods;

12. Design a test of the adequacy of the training capability;

13. Prepare procedures and materials for implementation of the test.

For training program development, one prime requisite will be a good

library of training procedures. In addition, the use of experimental fabrica-
tion tools and personnel may be required if there is a strong need to test new
training techniques. Training equipment development may sometimes be a
little development cycle in its own right. If training equipment includes some
advanced simulator hardware, for example, then the needed equipment might

include everything from a good library to a complete hardware fabrication

facility.
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Fabrication of All Training Materials and Accessories

Necessary for Training Crew Members

Activity G-10 (Remote)

This activity is concerned with preparing for the training of crew mem-

bers for the remote segment. Its output includes: (I) fabricated training

materials including training equipment, printed materials, audiovisual ma-

terials, and so forth; (2) a doeumented training program which completely

prescribes the activities by which training is to be carried out and which

includes the testing materials to be employed in the course of training; (3)

materials to enable the selection and training of instructors; and (4) a se-

lected (or fabricated) training plant.

The input to this activity derives from G-5, a technical management

activity. The input will identify the job performance to be promoted by

training, and the crew members responsible for each identified element of

performance. It will also identify the basic capabilities to be obtained by

means of selection, and the job performances that will be supported by means

of job aids. It will call for the development of all the materials necessary to

carry out training for the remote crew, and it will identify the numbers, of

personnel to be *_

Activity G-13 (Local)

This activity is preparatory to the training of the crew members for the

local segment. Its output must include all of the materials necessary for

carrying out the training program except selected candidates and job aids.

The categories of outputs required are the same as for activity G-10. The

input is similar to the input to G-10. It derives from G-6, a crew package

technical management activity.

Discussion

This section describe_ a typical procedure for preparing a training capa-

bility. There are 28 constituent activities involved in the method presented

here.

219



Figure 16 shows the relationships among the activities that may be re-

quired to fabricate a training capability. The activities depicted in Figure

16 may be divided into five familiar categories:

1. Training program development;

2. Equipment development;

3. Development of techniques for training evaluation;

4. Instructor capability development;

5. Support and facilities development.

We will discuss the categories in sequence, identifying the activities which

belong to each category.

I. Development of Techniques for Training Evaluation

There are two major subactivities in this development activity:

1. Develop requirements for data processing (G-13.14);

2. Specify processing equipment, procedures and personnel (G-13.15).

1. Development of requirements for data processing (G-13. 14). -- The

purpose of this activity is to determine the computations which will be required

to assess the completion of a particular phase of training, or of the training

program. The procedures for the use of performance data to determine when

a trainee may move on to the next phase of the training program, or when he

has completed the training program, are determined in this activity.

The requirements for this activity are to provide a specification for data-

processing equipment needs, personnel needs, and procedural needs. These

are stated in terms of required computational needs. This statement of com-

putational needs is used in activity G-13.15 to select data-processing proce-

dures, equipment, and personnel.

The initiating input is from G-6; i. e., the specification of the complete

training package requirements. Included in this package of requirements one
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would find a statement of the acts of measure which are to be used to assess

each element of training. These data initiate the development of require-

ments for data processing.

The sort of computations which may be required here are ordinarily

statistical ones. There are three types of statistical techniques which might

be employed. One of these is analysis of differences where the difference to

be assessed is the deviation of performance from the established standard.

A second is trend analysis where the trend is established by a running aver-

age approximating the standard as an asymptote. This choice would have to

be accompanied by an assessment of the fiducial limits for each of the aver-

ages computed to determine when the standard was within the expected range

of the average value. The third possibility would be a correlation technique

based on successive blocks of performance trials. Evaluation of this tech-

nique would require the determination of the range of correlation values for

the size of the block of trials selected.

2. Specify processing procedures, equipment and personnel (G-13.15). --

This activity is intended to determine the computer programs, the computers,

and the personnel types who use programs and computers to turn out the re-

quired analyses. These entities generate the analyses which will be used to

evaluate the performance of the trainees and to help determine when training

is completed. These are the means which will generate the data for the de-

termination that the performance criteria are (or are not) met. The output

of this activity is used in activity G-13.16, Develop training program for

operational personnel.

The initiating input to this activity is from the previous activity; i. e.,

the decision as to data-processing requirements. In addition to these initi-

ating inputs, data are required on the availability of computing equipment

and statistical programs for these items of equipment which could handle the

volume of data which would be generated.
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II. Training Program Development

Training program development consists of seven activities:

1. Specification of operator training tasks (G-13.1);

2. Specification of ancillary knowledge requirements (G-13.2);

3. Specification of procedures for imparting ancillary knowledge

(G-13.3);

4. Specification of task training procedures (G-13.4);

5. Specification of simulation training procedures (G-13.5);

6. Development of training materials for task and simulation training

(O-l_ _.

7. Development of a training program for operational personnel

(G- 13.16).

1. Specification of crew training tasks (G-13.1). -- The specification

of crew training tasks is only indirectly related to the operational system.

However, its importance lies in its output to subsequent activities in the de-

velopment of the crew training program. It is here that it is determined what

training tasks will be used to develop the operational performance capability.

The operational performance is analyzed to determine the training tasks to be

presented to the trainees.

The output of this activity is used in the specification of ancillary know-

ledge requirements, activity 2, and in the specification of task training pro-

cedures, activity 4. The output which is used in these two activities is a

detailed statement of all of the tasks which the trainees will experience in the

training program. This description would include the following:

. Crew tasks component in the operational performance, e.g., cali-

bration of equipment, search, detect, and lock-on and track;
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2. Task sequencing, as in the above example;

3. Accuracy of task performance, as required, e.g., calibration and

tracking would have accuracy requirements in the above example;

. Time constraints on performance, as required, e. g., search and

detect and lock-on may well have time constraints as in the above

example.

The initiating input for this activity (from G-6) is the specification of the

job structure and the fact that the indicated performance would be achieved

through training. In addition to this initiating input, the completion of the

task analysis would also require the specification of performance criteria and

of the method which would be used in the operational system to achieve the

indicated operational performance. The performance criteria provide an

indication of when the operational performance has in fact been achieved. The

means to be used in the operational situation indicate the sequencing of task

elements.

2. Specification of ancillary knowledge requirements (G-13.2). -- Almost

all operational performance involves cognitive as well as perceptual and mo-

tor aspects. It is the purpose of this activity to isolate the cognitive, or sub-

ject matter skills, required to perform the indicated sequence of tasks. If

the operational performance under consideration is the making of navigational

readings, the crewman must know the location of the stars he wishes to sight

upon as a function of the position of the spacecraft and the time of the year.

Depending upon the method of navigation to be employed, he may have to be

able to use special tables or may have to make certain computations. In the

case of spacecraft maneuvers, computation made by the crew members can

be important.

The output requirement for this activity is the specification of the ancil-

lary knowledge, and the amount of detail for such knowledge for each of the

several operational performance capabilities. This output is used in activity

3 to specify the procedures which will be used to provide the trainee with the

required information, if he does not already possess such.
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The initiating input for this activity is the output of activity I, the
specification of all of the tasks which the trainee will experience in the train-
ing program.

3. Specification of the procedures for imparting ancillary knowledge

(G-13.3). -- Each of the subject matter requirements isolated in activity 2

must be taught to the trainees. It is the purpose of this activity to provide the

procedures whereby this may be accomplished. There are a variety of pro-

cedures which present themselves for this purpose. Among these are the

traditional lecture, assigned readings, teaching machines, films and televi-

sion. In the accomplishment of this activity, each knowledge area might be

outlined in the necessary detail and the most appropriate method of conveying

the information would be chosen. It is desirable that the method chosen be

capable of capitalizing on that knowledge which the trainees bring with them.

The output of this activity -- the procedures to be used to impart the

ancillary knowledge u is used in activity 5, specification of simulation train-

ing procedures, and in activity 16, development of a training program for

operational personnel.

The initiating input for this activity is the output of activity 2, the ancil-

lary knowledge requirements. For the completion of the activity, however,

further inputs are required. These are knowledge of appropriate training

procedures and the conditions which dictate their use, as well as some indi-

cation of the kinds and amount of knowledge which the trainees may be ex-

pected to bring to the training program.

4. Specification of task training procedures (G-13.4). -- This is a paral-

lel activity to activity 3. The purpose here is to determine the series of

training steps which will be utilized to provide the trainees with the requisite

perceptual motor behaviors which will be required for performance in the

operational situation. These procedures will, of necessity, be built around

the requirements for operation which are dictated by the means designated

for the operational system.
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The output of this activity, the procedures for training tasks, will be

used in activity 5 to provide an input to the development of procedures for sim-

ulation training. These will be used in activity 6 to provide an input to the de-

velopment of training materials. They will also be used in activity 16, the

development of a training program for operational personnel, and in activity

25 to develop training program support requirements.

The initiating input for this activity is the output of activity I, the training

tasks which must be presented to the trainees. However, two other inputs are

required, both of which come from activity G-6. These are the job structure

and the method to be used to obtain performance in the operational situation.

These inputs are required because the behaviors which the trainees require

must be those which are needed in the operational situation. Therefore, the

given procedures must point the acquisition of behavior toward the specified

job structure and must also prepare the trainee to work with a particular

means in the operational situation.

5. Specification of simulation training procedures (G-13.5). -- Assuming

that the trainees acquire the necessary task performance capability, this capa-

bility must be integrated into efficient operator performance. This further

refinement of skills is achieved through the medium of simulation training. It

is this performance, developed in the simulator, which is called out in the de-

sign phase of the development cycle. It is this performance to which the per-

formance criteria properly apply. It is this performance capability whichthe

crew members will take to the operational setting. The output of this activity

is the procedures which will be used in simulator training to provide the opera-

tional performance capability.

The output of this activity -- the procedures for simulation training -- is

used in activities 6, 16, and 25. Activity 6 provides training materials for

both task and simulation training. Activity 16 is where the training program

for operational personnel is developed. Finally, the output of this activity is

used in activity 25 to develop training program support requirements.
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The initiating input for this activity is the description of the task training

procedures which is the output of activity 4. Additional inputs, shown in Fig-

ure 16 as coming by way of activities 1 and 4, are the structure of the opera-

tional job and the means to be used in the operational system. A final input

is information concerning the possibilities for task sequencing in the opera-

tional system. Given these inputs and data on the ancillary information re-

quirements and means for providing this ir!ormation, the procedures for

simulation training may be constructed. It is useful to identify three aspects

of simulation training. First, is the normal, or expected, mode of operation.

Second, is a contingency mode of operation which may arise because of the

exigencies in the usual operational environment of the aerospace system. The

third is a contingency mode of operation which may arise as a consequence of

failure in some part of the spacecraft itself. This latter is the sort of thing

which is usually thought of as an emergency. The simulation training program

must be capable of considering all three of these modes of operation.

6. Development of training materials for task and simulation training

(G-13.6). -- In this context, training materials may be thought of as any aid

to the achievement of performance. This includes special training aids, which

will be used in the training situations, and then only so long as they are neces-

_v tn support and _1,_+_n p_rfn_m_nr_

The requiremenl for the output of this activity is in activity 16, which is

responsible for the development of the training program, and in activity 17,

which is responsible for the development of tasks for training instructor per-

sonnel.

The initiating input for this activity are the task training procedures devel-

oped in G-13.4. However, completion of the activity requires the input from

G-13.3, the procedures for imparting ancillary knowledge, and from G-13.5,

the procedures for simulation training.

7. Development of a training program for operational personnel (G-13.16).

The outputs of the previous six activities are brought together in this activity
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to organize them into an integrated training program to prepare crew members
to perform the required operational and maintenance tasks. The curriculum of

this training program consists of courses composed of related operational
performance. Each course would require the assimilation of subject matter
knowledge and a portion of it would be devoted to the practice of associated per-
ceptual motor behavior.

The output of this training program development activity goes to G-16 for
the synthesis of the several methods of obtaining operational performance, and

also to H-10, where the actual training of the operational personnel occurs.
Finally, the output goes also to activity 25 to contribute to the specification of

support requirements for the training program.

The initiating input to this activity is the specification of the task training
procedures, but only because these are likely to be available first. To com-

plete the training program development, the outputs of all of activities 1
through 6 must be available. In addition, an input from activity 15, the speci-
fication of the procedures for evaluation of training performance, is required.
This latter is necessary so that data may be provided for processing to meet

the demands for analyses. Finally, for the completion of the training program
development, it would be desirable to know something about the expected sched-

uling of personnel through the program. Given the scheduling data one could
anticipate the through-put requirements, hence the number of replications of
courses and the requirements for instructor personnel and expendable materi-
als.

III. Equipment and Stimulus Input Development

This function consists of seven (7} activities:

i. Determine mode of operation of training equipment (G-13.7};

2. Obtain training equipment (G-13.8};

3. Determine requirements for maintaining training equipment (G-13.9};
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4. Obtain equipment, procedures and personnel to maintain training
equipment (G-13.10);

5. Determine requirements for stimulus inputs for training (G-13. Ii);

6. Obtain stimulus inputs for task training (G-13.12);

7. Obtain sti_r,ulus inputs for simulation training (G- 13.13).

I. Determine mode of operation of training equipment (G-13.7). -- The

purpose of this activity is to specify the manner in which the training equip-

ment is used by the trainee to perform the specified training tasks. The out-

put of this activity is, for all practical purposes, a procedures manual which

may be used by the trainee to learn to operate the training equipment. Each

of the items of training equipment must have such a procedures description.

This description must inch,_de all of the instructions for the lase of the given

equipment to perform the tasks to be learned by the trainee. This set of in-

structions will differ from procedures manuals per se in that it may not include

the use of job aids.

The requirements for this activity come from activity 4, the development

of procedures for task training. The equipment operating procedures are used

in conjunction with training tasks from activity i to specify the task training

procedures for the training program.

The initiating input for this activity is the method of obtaining performance

which was specified in G-6. In addition, it is necessary to have information

about the means to be used in the operational system and the tasks to be per-

formed in the operational system. These latter items of information are re-

quired to ensure that what the trainees learn to do will be consonant with what

they will be required to do in the operational situation.

2. Obtain training equipment (G-13.8). -- This activity is concerned with

the procurement of the training equipment. Generally, two avenues for ob-

taining training equipment are open. The first is to adapt items of operational

equipment to accept a synthetic input and thus rnetamorphize into training
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equipment. The second is to develop and procure separate and distinct items
of equipment for training. If the former method is chosen in a given instance,

then activity G-13.8 is a procurement activity. If the latter method is chosen,
then G-13.8 would have to be expanded to include design, specification, bread-

board, production, test, etc. activities.

The output of this activity is hardware, i. e., training equipment. This

output, or its consequences, is required in activities G-13.9, G-13.25, and
in activity H-10. In G-13.9, the consequences of the output are analyzed to
determine equipment maintenance requirements. In activity G-13.25, this
output enters into the determination of the requirements for support for the

training capability. The output is used in H-10 for the actual training of the
operational personnel.

The initiating input for G-13.8 is the specification of the method for ob-

taining performance capability which is the output of activity G-6. In addition,
information about operational system means and operational tasks is required
so that the training equipment will call out the same kinds of behaviors as the

operational equipment.

3. Determine requirements for maintaining training equipment (G-13.9).

The maintenance of the training equipment is in fact a support activity. How-

ever, it is necessary to determine how this support activity will be conducted,

as well as the people, equipment, and spares necessary to conduct the mainte-

nance activity. G-13.9 is intended to provide this information. There are two

classes of training equipment. One is that equipment which is used by the

trainees to acquire operational performance capability. This is what is usually

thought of as training equipment. The second includes all of the other items of

equipment required to support the training program, including the support of

the equipment items in class one. Activity G-13.9 applies to all of the items

in both classes.

The requirement for this output is in activity G-13. I0, where the require-

ments are translated into actual entities. The requirements are translated into
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people with skills, into maintenance procedures and equipment, and into spares

for use in maintenance tasks.

The initiating input for G-13.9 is the ^--*---* ^_u_ ,,1,_c,, Is _,,e train-

ing equipment. In addition, it will be required to know something about the

preferred modes of maintaining each of the items of equipment. For off-the-

shelf items, the manufacturer may recommend a maintenance regimen. If

such cannot be obtained, then a regimen may be developed from knowledge of

the types of equipment and the state of the art as regards maintenance.

4. Obtain equipment, procedures, and personnel to maintain training

equipment (G-13. I0). -- The purpose of this activity is to provide the neces-

sary capability to maintain the training equipment. Maintenance personnel,

as well as procedures and equipment for these personnel to use, is obtained in

G-i3. i0. The reader should understand the term equipment to mean _--_vw_, iv

the broad sense, and also spares.

There are two requirements for the output of G-13. I0. The first of these,

in the sense of most immediately, is in G-13.25 to contribute to the determi-

nation of the requirements for support of the training capability. The second

of these is in activity H-10 where operational training is conducted.

The initiating input for G-13. I0 is the output of G-13.9, the specification

of the requirements for maintaining the training equipment.

5. Determine requirements for stimulus inputs for training (G-13. Ii).

This activity is responsible for generating the requirements for the inputs for

all of the training activities. These inputs are used by the training facilities

to present information to the trainees which stimulates them to respond in the

manner dictated by the operational procedures. As examples of stimulus inputs

consider:

I. A star field for practices of navigational sightings;

_._ Vehicle motion to stimulate kinesthetic and vestibular cues;
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3. Roll, pitch or yaw data presented on an 8-ball type display;

4. Ground targets for practicing detection and tracking activities;

. Characteristics of the surface of a planet to be used to select

landing sites.

The output of this activity is a precise statement of the input stimuli re-

quired.

This output is used in G-13.12 and G-13.13 to provide the required

stimulus inputs for task and simulation training, respectively.

The initiating input for activity G-13.11 are data on operating tasks and

the means for achieving operational performance, both of which come from

activity G-6. The information on the operational performance provides data

concerning the type of stimulus input. The operational system means pro-

vide data on the characteristics which the operational input will possess.

6. and 7. Obtain stimulus inputs for task (simulation} training (G-13.12)

(G-13.13). N These two activities will be discussed together although they

are presented separately in Figure 16. While the kinds of things to be done

are the same, the output of G-13.13 may be much more extensive as regards

quantity, relatedness between elements of the input, and fidelity to the oper-

ational input. It is the responsibility of these activities to take the require-

ments for input materials as developed in G-13.11 and to combine these re-

quirements with a method of input production to obtain the necessary input

materials.

The output of G-13.12 and G-13.13 is used in activities G-13.24,

G-13.25, and H-10. In G-13.24, these materials will be used in the training

of instructor personnel. In G-13.25, they will contribute to the specifica-

tion of requirements for support of the training capability. In H-10, they

will be used to train operations personnel.

For both G- 13.12 and G- 13.13, the initiating input are the requirements

for the stimulus inputs which are the output of G-13.11. Given these
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requirements and information on methods for producing the input materials,
the activities _maybe accomp]ished.

IV. instruction Capability Development

Many of the activities to be described here are analogous to those de-

scribed above {Training Program Development). Where this is the case,

the reader will be referred to the previous activity. The discussion will

consider only the requirements and the initiating input. The development of

support facilities for the training capability consists of 8 activities:

1. Develop training tasks for instructor personnel (G-13.17);

2. Develop instruments to select instructor personnel (G-13.18);

3. Select instructor personnel {G-13.19);

4. Develop procedures for providing ancillary knowledge to instructor

personnel (G-13.20);

5. Develop procedures for training instructor personnel (G-13.21);

6. Develop materials for training inst_actor personnel {G-!3.22);

7. Develop a training program for instructor personnel (G-13.23);

8. Train instructor personnel (G-13.24).

1. Develop training tasks for instructor personnel (G-13.17). -- This

activity is analogous to G-13.1. Indeed, if the output of G-13.17 did not

depend on that of G-13.1, the two could be accomplished in concert. The

requirement for the output of G-13.17 is in G-13.18, G-13.20, G-13.21, and

G-13.22. G-13.17 uses the output to develop instruments for the selection

of candidates to be instructor personnel. The other three activities use the

output to help develop procedures for imparting ancillary knowledge, proce-

dures for training candidate instructor personnel, and for preparing training

materials for training instructor personnel, respectively.
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The initiating input for activity G-13.17 are the task training procedures
from G-13.4 and the procedures for imparting ancillary knowledge to opera-

tions personnel from G-13.3.

2. Develop instruments to select instructor personnel (G-13.18). --

The purpose of this activity is to develop a set of procedures whereby candi-

date instructors may be screened and suitable candidate instructors may be

selected. The problem is to first list the properties which an individual

should possess to be an instructor. Second, one constructs a method of

testing to determine whether the candidate possesses the property in ques-

tion. When each of the properties has been matched up with a procedure

which tests for the existence of the property, these procedures are combined

into a test set for selecting instructor personnel. This test set is called an

instrument for selecting instructor personnel.

The requirement of this instrument is in activity G-13.19, the immedi-

ate follow-on activity to G-13.18. Here the instrument is used to select

personnel who will serve as instructors in the training program.

The initiating input to activity G-13.18 is the statement of training tasks

for instructor personnel which comes from G-13.17. It is also necessary

to have available information on the trainee tasks and ancillary information

requirements. From these three inputs it may be determined what know-

ledge and skills the candidate instructors must bring with them.

3. Select instructor personnel (G-13.19}. -- The purpose of this activ-

ity is to administer the selection instrument developed in G-13.18 to select

candidates for instructors in the training program which is under develop-

ment. For the details of this activity, the reader is referred to activity H-6

of the fabrication phase of the development cycle (Chapter XI). Activity

H-6 is concerned, in part, with the selection of personnel for the opera-

tional training program. The procedures, if not the content of the selection

instruments, would be the same for G-13.19. The output of this activity are

the personnel who are selected as instructors in the training program.
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The requirement for this activity is in G-13.24, the activity which is

responsible for training the instructor personnel to provide them with _he

specific skills which they require to function in activity H-10, training of

operational personnel.

The initiating input for G-13.19 are the selection instruments developed

in G-13.18. In addition to this input, it is necessary that candidate instruc-

tor personnel be provided.

4. Develop procedures for providing ancillary knowledge to instructor

personnel (G-13.20). -- The purpose of this activity is directly analogous

to that of G-13.3.

The requirement for the output of G-13.20 is in G-13.23, the develop-

The initiating input to G-13.20 are the instructor training tasks provided

by activity G- 13.17.

5. Develop procedures for training instructor personnel (G-13.21).

This activity is directly analogous to G-13.4.

The requirement for the output of this activity is in G-13.23, the devel-

opment of a training program for instructor personnel.

The initiating input to G-13.21 is in G-13.17, the instr_dctor training

tasks.

6. Develop materials for training instructor personnel (G-13.22).

The purpose of this activity is directly analogous to that of activity G-13.6.

The requirement for the output of G-13.22 is in G-13.23, the develop-

ment of the training program for instructor personnel.

The initiating input to G-13.22 is in G-13.17, the instructor training

tasks.
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7. Develop a training program for instructor personnel (G-13.23).

This activity is directly analogous to activity G-13.16.

The requirement for the output of this activity is in G-13.24, which is

devoted to the training of instructor personnel.

The initiating input to this activity is from activities G-13.20, the pro-

cedures for imparting ancillary knowledge, G-13.21, instructor training

procedures, and from G-13.22, instructor training materials. In addition,

it would be desirable to have some scheduling information concerning the

rotation of instructor personnel for the different types of courses through

the training program. Such information would facilitatethe arrangements

for training facilities and for expendable resources.

8. Train instructor personnel (G-13.24). -- The purpose of this activ-

ity is to train selected personnel to perform as instructors in the operational

training program.

The requirement for the output of this activity is in G-13.25 and in H-10.

In G-13.25 the output contributes to the specification of support requirements

for the training capability. In H-10, the output provides instructors to work

in the training program. The activity is carried out in H-6 (see Chapter XI).

The initiating input to this activity are instructor trainees who come from

activity G-13.19, the selection of instructor trainees. In addition to this in-

put, the activity requires the outputs of activity G-13.20, which provides

procedures for imparting ancillary knowledge, activity G-13.21, which pro-

vides training procedures, and activity G-13.22, which provides training

materials.

V. Support and Facility Development

There are four major subactivities in this development activity:

i. Develop support requirements for the training program (G-13.25);
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2. Develop training facilities (G-13.26);

3. Develop an installation and checkout plan (G-13.27);

4. Provide administrative personnel (G-13.28).

1. Develop support requirements for the training program (G-i3.25). --

Any training program requires support for it to be a success. In the present

context, we conceive of trainees, training personnel, maintenance personnel

and equipment, training evaluation personnel and equipment, and the training

equipment as the major capability in the training program. We tend to view

the facility personnel and the administrative personnel as the support capa-

bility.

The requirement for the output of this activity is in the three following

activities. The first is G-13.26 which develops the training facility. The

second is G-13.27 which develops the installation and checkout plan. The

last is G-13.28 which is responsible for providing the administrative per-

sonnel.

The input to this activity is from G-13.4, G-13.5, G-13.8, G-13.10,

G-13.12, G-13.13, G-13.15, G-13.16, and G-13.24. Each of these activ-

ities provides information for the elaboration of support requirements.

2. Develop training facilities (G- 13.26). n It is the responsibility of

this activity to provide adequate space and appropriate environmental con-

trol to enable the training program to operate effectively.

The initiating input for this activity is the output of activity G-13.25,

especially as regards the requirements for facilities for the training cap-

ability.

3. Develop an installation and checkout plan (G- 13.27). -- The purpose

of this activity is to provide an organized plan for installing the means which

provide the training capability in the facility which will house them during

the period for which they will be used to train operational personnel. In
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addition to the installation of equipment, personnel, and all of the accoutre-

ments of training, the plan shall provide for the checkout of each of these

items. It is at this checkout that the initial test of the adequacy of the train-

ing program can be made. Trained personnel, in the form of instructors,

will be available to serve as subjects. The test should concern itself with

the capability of the training program to provide the performance capability

required by the designers of the aerospace system. This is one of the ear-

liest points at which the adequacy of the training program may be tested.

If it has weaknesses, this would be the most propitious time to reveal them.

The requirement for this activity's output, is in activity G-18 where all

of the capability for the development of operational performance is integrated

for the first time.

The initiating input for this activity is the output of activity G-13.25,

the specification of the requirements for training program supports.

4. Provide administrative personnel (G-13.28).- It is the responsibil-

ity of this activity to specify the various administrative skills and capabili-

ties required to support the training program.

The requirement for the output of this activity will be in H- i0, where

the training of operational personnel is conducted.

The input to this activity will be the output of activity G- 13.25, the

requirements for support personnel for the training program.
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XV. THE TRAINING OF SELECTED

CREW MEMBERS

Activity Group Requirements
and General Considerations

Men are employed in aerospace systems as means for implementing sys-
tem functions. They are so used when they can be justified in terms of sys-
tem cost and quality as the preferred method of implementation. As a system
means delivered by a development cycle, man must have the capability to per-

form in the operational system; that is, the performance that will be needed

in system operation must be latent and ready for use. There is, therefore, a

need to "fabricate" or train men to provide for the needed capabilities.

As in the case of hardware we may buy or select personnel performance

capabilities in the market place rather than fabricate to obtain them. Seldom,

however, in the case of a complex aerospace system, can we select men who

already have all of the capabilities necessary to perform system functions

with the required reliability. When selected men have only some (or none) of

the job-performance capabilities needed, there are two ways to "fabricate"

them. One is by providing the selected men with job aids to augment their

inherent capabilities. The other way is by training them so that new perfor-

mance capabilities are added to their repertoires. A combination of both is

usually needed. Thus, trained performance is required, in most cases, to

supplement performance capabilities gained by selection and by job-aiding,

such that each man to be used in the operational situation will work as needed

to ensure that the operational system performs with the required reliability.

Man is only available as a prepackaged means; we must therefore work

with whole men--in selection, job-aiding, and training. These three ways of

obtaining needed performance capabilities interact within each man. There-

fore, we must express the "fabrication" output which is required to satisfy

the need for man performance capability as a set of selected, job-aided, and

trained men each capable of carrying out his assigned functions.
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The activity group with which we are concerned in this section is the one
(as shown in the model) which follows personnel selection and the preparation

of job aids. It follows job-aid fabrication because personnel must be trained
in the use of job aids as well as to perform some system functions without job
aids. In fact, training always follows selection, but it may in practice overlap

in parallel with the preparation of job aids. Although the output of training
includes reference to selection and job-aiding, it must be quite clear that no
implication exists that training includes selection and job-aiding.

What happens if men are selected and provided with job aids, but are

delivered without training? If the performances earmarked for training are

operator performances either in the remote or local segment, and if nothing

is done subsequently to correct for the lack of training, the outcome would

certainly be an installed operational system whose probability of success

would be zero. In complex systems such as aerospace systems, it is very

unlikely that a selected and job-aided crew member will be able to use his

"native intelligence" to perform his assigned operator functions correctly the

first time through without training. If the untrained performance were main-

tenance technician performance (or support system performance), the effect

would be to degrade overall system reliability. In such cases, of course, the

extent of degradation would depend upon the accumulative impact of the un-

trained performances upon overall system reliability. In short, not to train

for assigned operator performances is analogous to a failure to fabricate and

install hardware which implements prime functions. In terms of overall sys-

tem quality, the effect is exactly the same in both cases. Not to train for

maintenance technician performance has the same effect as failure to fabricate

and deliver maintenance equipment. If the effects of failures to train are to

be corrected by retrofit actions, system costs will almost certainly exceed

expectations. If correction is not made, the impact is solely upon quality.

In designing a system, training may be used whenever there is a cost or

quality advantage to do so as compared to job-aiding or selection. Of the

three methods, training (as used) tends to be the most expensive way to pro-

mote performances. It is, on the other hand, likely to be the method which

is most amenM_le to reaction to last minute changes in system design. While
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selection may in theory be employed wholly in place of training, job-aiding
cannot be so employed. Whenever job aids are used to promote job perfor-
mance, secondary requirements are generated to teach personnel when and
how to employ the job aids.

Characteristically, weight, power and volume constraints on the local

segment have effects upon training that are not seen in the remote segment.
Thus, these constraints limit the number of personnel who can be employed
in a local segment, and may thus require that each man be given a wide
variety of performance capabilities and that there be considerable cross-

training in order to provide for reliability. The effects of training are sub-
ject to extinction, and for this reason, there may be reliability degradation
over time. For lengthy excursions, extinction effects must be taken into

account to preclude loss of reliability in the local segment. This may be
done in part in training.

Relationship of the Group to the
Development Cycle Model

Since we assume that men are used in both the remote and local seg-
ments, then training requirements arise in each segment. Thus, there will

be two parallel lines of development involved in preparing for the training
activity, one for local segment development and one for remote segment
development. During the course of training, these two parallel lines of devel-

opment are likely t'o become highly interactive inasmuch as the remote and
local crews will have to be trained to interact with each other. In the dis-

cussion which follows, we will trace only the line of development for the local

segment; the line of development for the remote segment is similar.

The only training activity concerned with the local segment that is explic-
itly called out in the development cycle model is box H-10. This box falls
within that part of the development cycle which is concerned with fabrication

of the operational system means.
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There are many activities in the model which precede activity H-10 that

are concerned with laying the groundwork for implementation of training in

activity H-I0. In Functions D, E, and F of the system development model,

there are a half dozen activities that are concerned with identifying the func-

tions that man will implement in the operational system. Activity D- 7 yields

an identification of all operator functions. Activities E-9 and E-i0 are con-

cerned with identifying maintenance functions; the former isolates maintenance

functions on prime hardware, the latter maintenance functions on operator per-

formanee. Activity E-12 will include identification of man performances in

the operation of the Human Support System. In Function F, activity F-8 iden-

tifiesman performances necessary for the maintenance of maintenance tech-

nician performance. Activity F- i0 determines man performances for the

maintenance of maintenance equipments and the maintenance of Human Support

System equipments.

Taken together, all of these activities identify what man will do in the

local segment, and thus specify performances which it may be neeessary to

obtain by means of training. In fact, within each of these listed activities

there must be consideration of whether or not the recommended allocations

of performances to man will create training problems which cannot be solved.

Thus, part of the output of each of the activities identified above will include

data to show thatif man is assigned performance responsibilities as recom-

mended, training problems will not arise that would move the system position

out of the desired cost and quality neighborhood.

All the functions recommended for implementation by man must be con-

sidered in activity G-6 where final determination is made of the total job

makeup for each crew member. In activity G-13, the training materials, the

training program, the training facilities, and instructor selection and training

materials will be prepared. As these items which are necessary for carrying

out training are prepared, job aids will be fabricated in parallel in activity

G-15. The design and fabrication of these job aids will create new training

requirements not specifically identified in activity G-6, and will add another

element to the total training burden. Between activity G- 13 and activity H-6,

242



there will be several reviews of decisions made in Function G which are rele-

vant to training and adjustments will typically be made. The next important

activity related to training is H-6, where men ,v1._ be selected as candidates

for the training program. The men selected for training will be joined with

job aids, the training facilities, instructors, training materials and the train-

ing program as the input to activity H-10 where training will take place.

In the "GO" model, the output of activity H-10 is a complement of fully-

trained crew members. In a real aerospace system development cycle, it

can be expected that there will be subsequent changes and adjustments in the

system, and that deficiencies in training will be detected and additional train-

ing will be required prior to final installation and demonstration of the aero-

space system. Thus, detections of training inadequacies and of hardware

inadequacies which will cause retrofit training may be detected in the review

and integration activities (H-14, H-16, H-18, H-19, H-20), and, as the need

for changes is detected, adjustment in training may be undertaken.

It can be seen that the output of activity H-lO--trained personnel--is an

output which is integrated through subsequent levels of system assembly to

become an integral part of the installed operational system--the output of the

total development cycle.

Resources Needed

From the standpoint of resource requirements, this activity group is

unique among all of the activity groups discussed. It is unique simply because

the resources required to carry out training are all developed within the

scope of the development cycle itself; resources from outside the development

cycle are not required. Thus, activities G-10 and G-13 provide all of the

basic materials necessary for training, including: training equipment, text

materials, exercise materials, a training program, test materials, instructor

selection and instructor training materials, and a training plant. Activities

G-8 and G-15 produce the job aids that must be employed in training for the

purpose of familiarizing trainees with job-aid use. Activities G-f1, G-12,

H-5, and H-6, taken together, account for the selection of candidates for
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training, and activities H-5 and H-6 provide instructors. Thus, there is

provision in the development cycle model for providing all the means neces-

sary to implement training in activities H-8 and H-10. Should a specific

development cycle require training means which do not fall into one of the

classes of means identified in the model, it would be appropriate to modify

that development cycle to provide for the unusual training means. It follows

that to identify the specific material resources required to implement training,

reference must be made to those activities in the development cycle which

produce the materials needed.

The Training of Crew Members

Activity H-8 (Remote)

The output of this training activity is an output of the development cycle.

It is trained crew members for the remote segment. The output must also

include data which demonstrate that the crew members are capable of the

operator and maintenance technician performances required of them and that

each performance exhibits the required reliability.

The inputs to H-8 derive from several sources. The input which contains

the requirement for training derives from H-5, a crew _package activity. H-5

also provides selected candidates for training and trained instructors. Job

aids for use in training for the purpose of familiarizing crew members with

them will derive from G-8. Training materials, training programs, and

training plant will derive from G-10.

Activity H-10 (Local)

The output of this activity is trained crew members for the local segment.

These crew members are physical components of the delivered operational

system. Activity H-10 must provide data which demonstrate that they are

capable of all of the operator and maintenance technician performances re-

quired of them, and data which show that they can be expected to perform

each function allocated to them with the required reliability.
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As in the case of H-8, inputs derive from several sources. Require-
ments for training and specification of the conditions under which the output
of H-10 will be evaluated derive from H-6. H-6 also provides selected can-
didates for training and trained instructors. Job aids are provided by G-15,
so that crew members may be familiarized with them. The training materials,
the training programs, and the training plant derive from G-13.

The inputs to the training activities include complete programs for carry-
ing out crew training. Thus, it is intended that the output of Function G
include a day-by-day, hour-by-hour description of how training will be car-
ried out for each crew member. (In the discussion which follows, it will be
seen that this assertion is not strictly true. ) It is intended also that the out-
put of Function G indicates what training equipment is to be employed, when it
is to be employed, and how it is to be employed. Further, the output of
Function G should include a comprehensive set of tcsts which includes all of

those tests that will be employed throughout the course of training ior ail
crew members, and a final examination for each crew member.

In the following discussion, we will attempt to describe an approach to
implementation of training which not only requires that these outputs be pro-
vided by Function G, but which also makes it possible for Function G to antic-

ipate exactly what must be employed in training and thus to produce the needed
materials, tests, and programs. It will be seen that it is the main line of
training that is anticipated in detail in Function G, but that there are correc-
tive loops associated with the main line of training which cannot be anticipated
in detail but which must be worked out in the course of the training activities

themselves. For these corrective loops (which are really additive loops in
the training program), Function G can only provide materials and guidance
that are likelyto be useful.

The description of the training process which follows looks at a training
program from the point of view of program development. This point of view
is adopted simply for expository purposes. It must be remembered that in
activities H-8 and H-10 training programs will be used, not developed. If
the characterization that is presented below is not a faithful representation
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of the way in which training is currently carried out, it nevertheless reason-
ably well serves our first purpose which is to provide a basis for identifying
what is needed to implement the training activities.

Those who must devise the training program have one all important ob-

jective toward which they must strive. That objective is to prepare a training

program in such a way that the graduates of the program, when supplied with

the job aids and other materials they need, will be capable of exhibiting those

human performances which are needed in the operational system. Thus,

their objective is to devise a program which will prepare the trainees to take

a "final exam. " That final exam is defined by the set of performance capabili-

ties which man must supply to the operational system. Notice that we say the

exam is defined by these performance capabilities, rather than saying that the

exam is the exhibition of these performance capabilities. This is because we

u_e the complete set of objectivelydefined operator and maintenance techni-

cian performances for each crew member to establish the objective of the

training program; we call the description of that set a "final exam" when all

of the performances are described in a manner that provides a basis for

evaluating a graduate trainee's capability to perform as required in the opera-

tional system. In general it is not possible to employ the complete final exam

as a final testnalthough it is necessary that the final exam be documented so

that there is a specific public and "inspectable" statement of training objec-

tives. We will call the test, which is given at the end of training, the final

test. The results of this test must correlate with the results that would be

obtained if the final exam were given so that final test results may be used

to predict fitness of trainees for performance on the job.

It must be clear that the goal of training is to enable trainees to "pass"

the final exam; it is not to train them to pass a specific final test.

H-6
Selection

trainee candidates
selected with

specific repertoire

of basic performance
capabilities

V
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The training program designers know what they have to work with in the way
of the basic performance repertoires of the prospective trainees (the output

of the selection activity, H-6). They also know precisely how the trainees
must be measured at the end of the training program (the final test) and what
the target performance capabilities are (final exam).

The next task confronting the development of the training program is to

devise a sequence of tests, T 1.... Tn to be inserted between H-6 and the
final exam. The situation then becomes:

Each test represents a point where a specified set of responses is desired from
the trainee. The sets of responses are sequenced so that later sets build upon

earlier ones, and so that they culminate in the set of responses defined by the
final exam.

In addition, for each test there must be a clearly available training pack-
age which will enable the trainee to achieve the response required by the test,
iJ_....._v_,e_A only _a*.... he was able to respond successfully to the previous test.
Thus, we are not finished laying out the sequence of responses to be tested
for until we can be sure that there exists for each test point a possible train-

ing package which will enable the trainee, who has responded successfully to
the previous test, to respond successfully to the following one. Let us denote
the training packages which prepare the trainee for the successive tests as

LI' L2' Ln + 1 (L for lesson). Then the pictorial situation becomes:

° +i

Thus, we have a sequence of lessons which, starting from the raw trainees

provided by H-6, molds their behavior characteristics until the behavior
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demanded by the final exam is achieved. Sometimes it turns out that each
lesson adds a few new performance capabilities which are directly needed in
the final exam. The above process then may be viewed as a process of

attaching performance capabilities to the trainee's repertoire a few at a time,
until he has all that he needs. Other times, however, not every lesson will
add a performance capability which is needed directly for the final exam.
Rather, a given lesson may provide the trainee with behavior characteristics
which do nothing more than provide the foundations for a later lesson.

With this approach a test is never made, unless there are alternative

courses of action which depend on the test results. Thus the next task which
must be accomplished is that of devising corrective training procedures at
each test point, in case the trainee does not fare well in testing. Corrective
training procedures may be very involved and lengthy, but we shall indicate
symbolically the corrective training function (no matter how complex in
reality) at each test point by a single box:

"'" _n_ Ln

I CorrectiveTrainingl I C°rrectiveTraining I
Final Corrective

Training

Each corrective training box has a need for a training program of its own.

The same techniques may be used to provide each of these little training pro-
grams as are used to provide the overall training program. Corrective train-
ing is needed in order that the overall training program may have the required
probability of success.

So far, in the discussion of the training program, one very important
function is missing, a function to provide the trainees with an underlying goal

direction, or motivation, to support them throughout training. Motivation
provides an "internalized" stimulus which, when accompanied with the stimuli

from the training lessons, provides the complete set of stimuli needed for

learning. When the final exam is passed by the trainee, he should recognize
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that his goal has been achieved, and those motivating stimuli peculiar to

training should be shut off. To this end, it will generally be quite useful to

utilize the motivation function to provide the trainees with a good clear picture

of their final exam. In addition to telling the trainee .......w_1_. his +_ aln_,._"_-_ m_t_ra-.....

tion may be "turned off, " familiarity with the final exam helps the trainee to

separate those things in the training program which are particularly important

and applicable to him, from those which are not.

Thus, the next task is to devise the motivation function which will provide

the trainees goal direction throughout the training program. With this addi-

tional function, the picture of the training program becomes:

SelectedTrainees

There is one last function which is not included in the above picture,

which must be taken care of. The problem is that the prospective trainees,

which the selection activity (H-6) turns out, may not in fact have the basic

performance repertoire needed in the training program. Therefore, a func-

tion must be inserted just after Box H-6, whose input is the set of raw trainees

selected by H-6, and whose output is the set of trainees with the required

basic repertoires of performance capabilities. This function corrects any

failures of activity H-6.

The next task of the training program then, is to devise a method for

implementing this function. With this final function the training program be-

comes:
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Needed Rep-

_H--_ Raw _'_ertoires of DTrainees L.J Performance

Capabilities

Trainees " " "

This completes the development of the training program. What is finally

provided to the personnel who conduct training is an outline, like the one above,

of the functions to be performed during training, with detailed instructions on

how to implement each function.

Up to now, however, the picture above does not indicate the inputs that

are needed from outside sources during training. From activity G-13 instruc-

tors are provided as they are needed to the various training lessons,

LI' Ln + i" In addition, G-13 provides the training materials and facili-

ties as they are needed in the training lessons. The prototype job aids which

might be required in each lesson are input from activity G-15. When there is

a need for instructing the trainees in the use of the materials for maintaining

human performance, these materials (or prototypes thereof) will be provided

by activity H-II. (It should be observed that the training activity itself may

provide an input to H-If if new requirements for materials to maintain human

performance are discovered during training. )

Serendipity Associates

Chatsworth, California, October 1966
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I. INTRODUCTION

In the world of human factors as it is app_ed in the design and development

of aerospace systems, a jargon has evolved. In part, the terms in the jargon

have been developed in universities where human factors is given formal con-

sideration as a discipline. And, in part, these terms have come into wide us-

age because they have been set down in Air Force Manuals, Navy Directives,

and NASA Policies. Of all the Government agencies which employ numbers of

human factors personnel, the Air Force has probably contributed the greatest

number of concepts and terms. Concepts and terms which are defined for use

within the Air Force come to be used broadly outside of Air Force programs,

simply because the human factors people who work on Air Force programs

subsequently work on other non-Air Force programs and carry their termin-

ology with them. Some of the terms which are employed by human factors and

biotechno!ogieal personnel have relatively long and impressive histories and

are used with essentially the same implication by all professionals. At the

other end of the continuum there are words which have been introduced recently

and which are used only locally, and then without consistency. We may ignore

the terms at the latter end of the continuum, but the terms which are used

broadly and generally with consistency are important to information commerce

not only among human factors personnel, but between human factors personnel

and others engaged in aerospace system development. Where such terms are

"bad" they cannot bestricken from use; they must be accepted and integrated,

and, in effect, "made good. "

This report is the fourth part of a series. In Reports IA, IB, IIA, and

IIIa relatively restricted and well-defined set of terms relating to hu-

man factors activities and system development is employed. In these prior

reports those words in the vernacular which might give rise to confusion or

ambiguity in reading and using the reports have been avoided. Although it was

deemed desirable to avoid the use of such terms in the previous reports, it is

certainly not desirable to avoid them altogether. What has been said in the

previous report must be articulated with the vernacular because the vernacular

will be used. Relating the vernacular to the set of terms employed in Reports

I through iII may also assist some readers to better understand the terms and
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concepts employed in the earlier reports. To the end of relating the important

human factors terms to the uncommon terminology of the previous reports, and

to the end of discussing some of the apparent inadequacies in current concepts,

this report has been prepared.

This report contains twelve substantive chapters. The chapter headings are

in each case important words from the vernacular. Within each chapter there

is presented first a discussion of the chapter heading. Following this, there

is a discussion, term by term, of the important concepts employed in human

factors work which are related to the concept identified in the chapter heading.

When itis appropriate to do so, these concepts are related to usage in Part A

or to other reports of this series. Discussions of techniques related to

the concepts are not introduced unless necessary or useful for the purpose of

conveying the concept to the reader. The concepts covered in these chapters

are the important tools for synthesizing aerospace systems. Some of them

are related to aerospace systems as a whole, but the majority of them are im-

portant in the design and development of the man-related features of man-

machine systems. When it is appropriate, the utility (feasibility)of a concept

is discussed in the light of human factors experience in aerospace system de-

velopment and in the light of the rationale of the simple man-machine develop-

ment cycle presented in Report I. For the convenience of the reader, a copy

of the symbolic model and a brief explanation of it are presented in Part A of

this report.

The previous reports have not emphasized the role of basic data in system

development and in the development of personnel products. This report places

greater emphasis on the role of basic data in the real world of development of

man-machine aerospace systems.

Preparation of this report has revealed an important research implication.

This implication is discussed in the final chapter of the report.
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II. A DEVELOPMENT CYCLE MODEL

FOR AEROSPACE SYSTEMS

All of the reports in this series relate to the model of the aerospace

system development process that is presented in Report IA. Of all of the

reports, the relationship of this one, Report IIB, is most tenuous. In fact, a

reader who is interested in the usage of the terms discussed in this report,

but who has no serious interest in the development cycle model itself may

safely ignore all references to the model and to the specific terms by which

the model is described. Therefore, in order not to overburden this report in

the series, we refer the reader to the diagrammatic version of the model

taken from Report I/k and presented in Part A of this report. For the reader

who is familiar with Report I/k, the diagrams presented in Part A will serve

as an adequate reminder of the content of the model so that he need not refer

back to Report. !A. The reader who has not see_n Report. !A but who is inter-

ested in the model should refer to that report for details.

For the reader who must choose whether or not to refer to Report I/k, a

few words about that report may be useful. Report I/k attempts to present a

model of an aerospace system development cycle that will enable the predic-

tion, design, and control of human engineering, human factors, biotechnologi-

cal, and life support system activities necessary for the successful prosecuiion

of an aerospace system development cycle. The report presents a working

vocabulary of approximately forty terms, some of which are referred to in

this report, and employs these terms and an associated set of symbols to

present a model of aerospace system development cycle at the level of detail

given in Figures 1 through 9 in Part /k of this report. The report also pre-

sents a detailed discussion of the rationale underlying the model. It can be

seen from examination of Figures 1 through 9 that the diagrammatic form of

the model ignores development errors. Thus, the diagrammatic form is one

which assumes that development will proceed without the need for correction

and retrofit. Report I/k contains a discussion of principles by which this form

of the model can be elaborated to take account of errors in system development

by means of management actions.
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Report IA presents an index model which is a simplified model in eight

functions that presents an overview of the entire development cycle model.

The diagrammatic form of this model is presented in Figure I, Part A.

Figures 2 through 9 (Part A) present the diagrammatic form of the breakout

of each of the functions in the index model. The development activities

identified in these figures are defined in terms of their input and output

states; the diagrams show the relationships among the activities so defined.
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III. PERSONNEL SUBSYSTEM

The two major topics included in this chapter are, first, a discussion of

the concepts involved in the definition and development of personnel subsystems

and, second, system analysis. The inclusion of the concepts related to sys-

tem analysis per se within this chapter reflects, to a degree, an aribitary posi-

tion. System analysis is a broad term that can be applied to a number of the

chapters of this report. However, this report is concerned primarily with the

concepts related to man-machine systems--and thus is specific to a particular

focus toward systems--and system analysis provides the basic context within

which personnel-related concepts are developed. Therefore, it was felt that

inclusion of the system analysis topic would be appropriate in the first substan-

tive chapter of this report.

Personnel _-_" .... +'_

During the past ten years, personnel subsystems have been the focus of

wide attention in industry. This attention has resulted from a growing aware-

ness of the contribution to any system made by the human component. Whether

he is used solely to maintain an essentially machine system, or to operate on-

,11_ system equipment, the human requires human-oriented machine interfaces,

training, system-specific skills, and particular kinds of environments. The !

specification of those aspects of the system that have direct and indirect bear-

ing on the use and performance of the human in a particular system is what is

generally meant by the personnel subsystem concept. This subsystem requires

a special development organization and consideration just as any other essen-

tial subsystem.

As it is currently used, the term subsystem refers to a specific set of

elements within a system. However, by extension the personnel subsystem is

used to identify particular programs of development within the setting of a sys-

tern development cycle. Those programs implied by personnel subsystems in-

clude the following (after AFSCM 80-3, ref. 3):
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0 Definition of the methods, techniques and procedures used to acquire

personnel subsystem data and products;

2. Identification of documentation within each phase of the system develop-

ment cycle that pertains directly to personnel subsystems;

. Provision for integration of all system development activities with

respect to man-machine interfaces and specific human-related re-

quirements, tasks, and system provisions.

From the above, it may be seen that personnel subsystems are a major

focal point for the organization of all analyses and data collection relative to

human interaction within a system in question. This concept, then, includes

considerations of any aspects of man in the system whether the man is func-

tioning as a supportive agent to the system, or is a direct operational agent.

Report Series Relation

In this series of reports, the phrase personnel subsystem is not employed

--primarily because the things to which it refers do not constitute a system as

the term system is used in this report series. Thus, to use the term per-

sonnel subsystem might create confusion as to the intended meaning of the

term system. Another reason for avoiding the term personnel subsystem is

the general ambiguity with respect to the implications of the term. Clearly,

it does not refer to a single set of end products nor to a single process. Var-

iation in the use of the term makes it inappropriate for use where there is an

attempt to communicate with precision.

The term used in this series of reports which comes closest to personnel

subsystem is personnel products package. The personnel products package is

the collection of all of the end products of a man-machine system development

cycle which are required because man is employed in the operational system.

It includes such personnel products as selected and trained crew members, job

aids, human-engineered interfaces, materials to be used in maintaining reli-

able human performance on the job, and support system means such as life-

support system equipment.

260



System Analysis

System analysis is a term that has been in use in the aerospace industry

since its inception. However, as with many terms in general usage, it per-

mits no precise definition by concensus. It has been used to refer to a number

of specific analytic techniques in a fashion idiosyncratic to its application.

Apart from any general attempt at defining this term, it is operationally defined

each time it is used by the nature and kind of analytic techniques subsumed

within it. One attempt at precise definition of the term system analysis is as

follows: "The discovery and identification of sources of error or variability

in a system, the measurement of these errors, and the arrangement of ele-

ments to improve system performance. " (AFSCM 80-3. ) This definition is

adequate for many uses of the term; however, it would exclude many current

uses of system analysis during the development cycle.

In current use this term is operationally applied to those situations in

which several specific analytic techniques are applied to a system. These

techniques consist of the following:

. Requirements and constraints--including the identification and develop-

ment of mission requirements, performance requirements (of both

equipment, support and mission-oriented, and personnel) system con-

straints.

. Functions all.cation--the allocation of functional processes to men

and/or machines. This term is discussed elsewhere in this report.

. Analysis of design requirements--determination and specification of

the systemVs primary goals in terms of required outputs of the system

to be developed.

. Functions analysis--identification of functional components comprising

the system in order to reach the system output state.

. Man-machine capabilities--determination of the specific capabilities

that can be performed by men or machines.
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. Identification of design requirements--determining the parameters

and values necessary to choose between alternate means for reaching

the system output state (trade-off evaluation).

. Identification of personnel functions and system reliability--determin-

ation of the degree to which personnel have been assigned to functions

which they can perform well.

While a particular instance of systems analysis may not include all of the

above analytic concepts, it would, as a rule, include most of them. The sys-

tem analysis concept then does not refer to a particular analytic technique, but

rather is itself a collection of analytic goals, each component of which can be

performed by several specific means. In the space warranted by this discus-

sion no attempt arc.repleteness or exhaustiveness can be made with respect to

listing analytic goals, procedures, techniques that would be nominally included

in the concept of system analysis. However, the ones mentioned above are

representative of analytic programs currently in use.

Report Series Relation

The term system analysis is not used in these reports because it has been

used with such a variety of meanings. Thus the term cannot at present serve

as an effective one in precise communication.
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IV. SYSTEM REQUIREMENTS ANALYSIS

During the initial stages of system development, the primary focus of

effort is toward defining the requirements essential to the most useful exposi-

tion and specification of the system. In a manner of speaking, the greatest

proportion of effort expended during early system development activities may

be seen to be related directly to a definition, specification, and identification

of requirements of the system as a whole and specific elements within the sys-

tem. Certainly, within the context of Air Force system development sequenc-

ing, early phases are concerned primarily with requirements analysis in one

form or another within the context of system engineering documentation.

The manner in which requirements are identified is largely contingent upon

the level of specificity of the system to which the requirements are to be ap-

plied. Thus, one may perform an analysis of the requirements of a system

qua system by using the broadest functional definitions of the system, and by

identifying the needs imposed by the follow-on system (the system in which

the reference system is embedded). That is, a system is developed to serve

a number of relatively specific needs. Identification of these needs is made

most readily by referring to the so-called follow-on system and adjacent sys-

tems that the developing system will serve.

Within the developing system itself, requirements may be identified for

any given function or subfunction level. Thus, function A may have specific

requirements associated with the needs demanded by its associated function B.

In general, the history of requirements analysis within the system parallels

the development of analysis for that system.

The term requirements is difficult to identify and define in and of itself.

It is typically associated with a modifying word, as in system requirements,

or mission requirements. Topics discussed within this chapter are, there-

fore, principally related to the term requirements in association with some

modifying word. The topics discussed include system requirements,

mission requirements, requirements analysis, and personnel requirements

data.
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Also included in this chapter, is a discussion of the concepts related to

system requirements sequences. This phrase has a variety of meanings in

use throughout the aerospace industry, As used in this report, it is taken to

refer specifically to what is otherwise known as the development sequence.

That is, the manner in which a system proceeds from initial conceptualization

to final development. Each agency has, for the most part, derived its own set

of partitioning phrases for the development cycle. Discussed in this chapter

are the development cycles of the Air Force and NASA. Because the develop-

ment cycle is, to a large degree, concerned with definitions of requirements,

this topic is included in this chapter.

System Requirements

Requirements refer to the essential operational performance of a system,

or of its components. Performance in this sense is not the product of a par-

ticular means, but rather the functional performance of the system. In general

terms, it is a Primitive Need Statement or a set of statements that reflect what

a system, or a part of a system, must do. This term may be distinguished

from specifications in that specifications are generally related to specific end

items; that is, particular pieces of equipment or means to accomplish a par-

ticular kind of performance. Although the distinction between requirements

and specifications can be made, current usage in the aerospace industry fre-

quently confuses them. An additional term, also confused with requirements,

is constraints. Constraints, in this context, should refer only to limitations

imposed on the manner in which a system performance is accomplished rather

than the nature of that performance itself.

Requirements, in and of itself, is a broad term rarely used in the develop-

ment cycle of a system. It is more frequently found associated with modifying

terms to refer to specific kinds of documentation or analyses. Usual usage is

exemplified by the following: task requirements, design requirements, and

functional requirements. In each of these cases, some change in the original

definition of the term has taken place. Task requirements refer to definitions

of the kinds of performance required by human tasks. They are therefore, to

a degree, means-oriented in that a man-machine allocation would have preceded
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any definition of human tasks. Design requirements represent a similar

modification of the general definition of the term requirements, in that design

also refers to specific means and/or end items. In the case of functional

requirements, the term requirements is used in its broad sense.

Establishing system requirements is frequently felt to be the responsibil-

ity of the sponsoring agency and is sometimes provided prior to personnel sub-

system development. However, for persormel subsystem_ analysis to provide

the most meaningful man-machine allocations and subsequent task delineations,

system requirements must undergo a parallel analysis. That is, at each level

of system specificity, requirements must also be made more and more specif-

ic. At the task level, the requirements specified by task analysis must reflect

not only those idiosyncratic to the task, but also those components of the sys-

tem requirements that are relevant.

It is clear from the above that the initial statements of requirements of a

system are extremely important to subsequent system development. Without

precise definitions of the requirements of a proposed system, there is little

way of identifying what performance the system must be capable of, and what

the outputs of that system must be. As a result, determination of the require-

ments of a particular system is usually the first step inthe development cycle.

However, it is a step that is frequently imposed on the customer agency rather

than the contractor.

Report Series Relation

In the context of this report series, the term requirement has a much

more specific connotation. A requirement is specified by identifying a desired

output state. There is never a requirement for a means; only for a state. A

given requirement is satisfied when a real-world means is used to provide the

output state identified in the requirement. Thus one might document a require-

ment for a particular payload to be in orbit about a planet, without initially

specifying the means by which itis to be accomplished.

The source of system requirements is found in close analysis of the needs

of the system it is to satisfy. To continue the above example, the need may be
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for a practice in performing docking maneuvers. From the statement of that

need, a requirement for a particular payload in orbit may be generated.

Requirements Analysis

The term, as it is used today, has both general and specific meaning.

Generally it refers to any of the techniques used for determining the broad

requirements of a system to be developed, as well as specific characteristics

of means selected to meet these requirements--as would be necessary in spec-

ifying lower levels of functions analysis. Requirements may be identified at

virtually any level of specificity. Any technique that has as its goal the iden-

tification of these requirements may be properly called requirements analysis.

More specifically, however, this term has come to be applied, in Air Force

usage, to a specific type of method used in association with, and as part of,

a general functions analysis. This specific technique is embodied in the use

of a requirements analysis sheet (RAS) that presents a verbal description of a

function together with the constraints imposed on the performance of that func-

tion, and the interactions of that function with other functions. In this more

limiting definition of requirements analysis, the purpose of analyzing system

requirements is to determine the specific functions the system must perform.

In this context the requirements refer to the requirements of the system in

question for particular allocati_ns of men and equipment.

Requirements analysis, as it is usually applied in current aerospace de-

velopment systems, may also refer to other portions of a functions analysis.

Within the framework of functions analysis, the term is associated with several

others: mission requirements, performance requirements and system con-

straints.

Mission requirements are broadly stated functions that the system must

perform, viewed, in a sense, as end items. For example, the injecting of a

manned space vehicle into orbit, or the launching of a rendezvous target ve-

hicle into orbit would be requirements for missions associated with Gemini

flights.
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Performance requirements are details of the system' s mission requirements.

As a rule there are two types of performance requirements, operational and

support. Qperational requirements are concerned primarily with the active

performance of the mission, while support requirements are those related to

the equipment and events concerned with preparation and maintenance of the

operational capability of the system. The _,odification of a mission require-

ment by appending performance specifications--for example injecting a space

vehicle into orbit and appending the altitude of the orbit and the velocity of the

vehicle while in orbit--would result in performance requirements.

System constraints are limitations imposed on the manner in which the

design of the system takes place in terms of factors originating from outside

the system being developed. For example, the funding available to develop

the system_ the nature of personnel available for manning the system, the per-

iod of time in which the system may be developed, are all system constraints.

Report Series Relation

Requirements analysis, as a term, is used in this series of reports. How-

ever it refers to a slightly different concept than the above definition.

In these reports the term is applied to the first function in a development

cycle. The principal input to this function is a Primitive Need Statement; its

output is a document which specifies an operational system requirement. The

requirements analysis may be implemented by the customer in response to his

own Primitive Need Statement, or it may be carried out by an agency hired to

act for the customer. The essential steps of a requirements analysis are as

follow s:

I. The follow-on system of concern to the customer is defined.

. The Primitive Need Statement is considered, and, if necessary,

it is revised to identify the specific problem to be solved within the

system of concern to the customer.
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Agreement is achieved with the customer with respect to how to

measure success in solving the identified problem within his system

of concern.

Input states to the follow-on system which may solve the identified

problem are hypothesized.

Confirmation exercises are undertaken to determine what input state

to the follow-on system will best solve the identified problem. This

step may, for example, involve construction of a model of the follow-

on system which will permit examination of its performance given

various input states.

Further study of the follow-on system is undertaken as required in

order to prepare an operational system requirement document whose

main purpose is to identify the output of the needed system. Thus a

requirement is generated for an output state to be provided.

Personnel Requirements Data

The personnel subsystem is the context within which analysis and data col-

lection of information about, and for, the personnel utilized in manning the sys-

tem to be developed are integrated. The results of these analyses and data

collection appear in the form of the personnel requirements data. That is,

personnel subsystem refers to various specific elements of the system. For

those particular elements of the system, various analyses and data collection

activities are performed. The results of the data collection and analyses are

in part the personnel requirements data. Those data related to determination

of the requirements for and about personnel to be used in the system--such as

training, environmental constraints, man-machine allocations--are the data of

concern here.

Report Series Relation

There is no term in these reports that is logically or functionally equiva-

lent to personnel requirements data.
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System Requirements Sequence

With the complexity, cost, and time requirements associated with the
development of aerospace systems today, a great deal of sponsor-contractor

interaction is necessary. Organization of this interaction--in fact, organiza-
tion of the entire development cycle of a new system--is the function of the

system requirements sequence. There have been several attempts at an organ-
izational scheme. Perhaps the most public scheme now in use in the aero-

space industry is that developedby the Air Force as part of their 375management
series (refs. I, 2, 4, 5, 6, 7, 8, I0).

This development scheme is concerned with the organization and control
of data required to support the life cycle of a new system. In the Air Force
scheme, the life cycle is divided into four phases: Conceptual, Definition,

Acquisition, and Operational. The Conceptual phase has as its objectives the
recognition and definition of requirements for future systems, conception of
systems that potentially satisfy the requirements, and stimulation of develop-
ment that make technically feasible the satisfaction of the requirement. This
phase results in a thoroughly defined set of system requirements, a technically
feasible system concept, and a preliminary system design. The phase may be
initiated by the government or by contractors, although it is typically a sponsor-
related activity. To a degree this phase is analogous both in terms of objec-

tives and potential outputs to Phase A and part of Phase B of the NASA sequence

(ref. 12): the Advanced Studies phase and the Project Definition phase. It

also corresponds to the Concept Formulation phase of the DoD (ref. Ii).

Although it is difficult to make exact comparisons, it appears that Func-

tions A and B in the index model given in this report correspond to Phase A

of NASA, and that Function C in the model corresponds to Phase B of the NASA.

The second important phase in system development for the Air Force is

the Definition phase. This phase has as its general objectives the definition

of cost scheduling and technical design requirements of the program. It is

usually viewed as a set of three subphases. The first subphase (I-A) is the

preparation for contractor definition, and is a synthesis of information derived

from the first phase and results in an RFP. The second subphase (I-B) starts

269



with the award of a eontraet to one or more contraetors and covers the task

of defining all aspects of the program in terms of performance, design re-

quirements, and time and cost estimates. The third and final subphase (I-C)

is for sponsor review and decision. During this subphase, the sponsor eval-

uates the eontractor reports and makes recommendations for acquiring the

system in question. For the most part, the Definition phase is the focal point

for the development of system engineering documentation in general, and per-

sonnel subsystem data in particular. It is during this phase that initialdeter-

mination of funetions, allocations, manning, training and training equipment,

and maintenanee concepts are derived. Since a major goal of the Definition

phase is the determination of cost estimates for the acquisition of the system,

it may be seen that specification of systems analysis (particularly to the man-

machine allocation level) is essential in order to determine the contractor end

items (CEI) necessary to make cost estimates. Frequently, the second major

cost item is the training and training equipment. Consequently, during this

phase a great deal of effort is focused on those analyses concerned with train-

ing. At the end of this phase sufficient information is presented to the spon-

sor to permit determination of which contractor should be permitted to develop

the system in question to its operational stage, the cost involved in such devel-

opment, and the feasibility and potential system effectiveness of such a system.

This phase is apparently analogous to the latter part of Phase B of the NASA

sequence.

The third phase in the development of the system is, for the Air Force,

the Acquisition phase. This phase begins with the award of contracts to an

industrial organization and ends during the operational or fourth phase when

the system and management responsibility for the system is transferred to

the using command. This phase includes detailed design of the system, con-

struction of the system, and various levels of testing directed toward deter-

mining whether the system is meeting the proposed performance standards.

During this phase the contractor delivers specific contractor end items to the

sites on which they are to be operational. Various tests are performed on the

end item to insure its adequacy and, as a general rule, on a site-by-site,

item-by-item basis. As each portion or item of the system is accepted by the

customer, that item becomes operational. The acquisition terminates when
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all elements of the system have been delivered and responsibility is transferred

to the using command. This phase apparently corresponds to Phase C and to

part of Phase D of the NASA sequence. Ln the NASA sequence, Phase C is en-

titled Design and Phase D, Development/Operations. That part of NASA Phase

D concerned with operations is best equated with the Operational Phase of the

Air Force (see below). NASA Phase C and the Development part of Phase D cor-

respond: to Functions D, E, F, G, and H in the index model given in this report.

The final phase of system development in the Air Force scheme is the op-

erational phase. In this phase, delivery of end items, and testing and final

acceptance is completed. This phase is initiatedwhen the first operating unit

is accepted by the user, and terminates when all contracted aspects of the sys-

tem in question have been accepted by the using command. Since in complicated

systems end items are produced sequentially, this phase can overlap with the

previous Acquisition phase.

The above phases in the life cycle of a system to be developed are, among

other things, a data management organization. As a rule, categories of data

are standard throughout the four phases; however, the particular analyses and

specificity of data involved varies from phase to phase, as does the use to

which the data is put.

Comparison of the _,A_A .........._+_ +_'_Air m .... ,_....l_,,__

ment sequence indicates that while the total scope of each is quite similar to

the other, the manner in which development activities are apportioned to spe-

cific phases differs widely. These differences in part reflect the different

needs of the two agencies. Products (systems) provided to the Air Force by

the aerospace community frequently involve many copies of each system. That

is, in proposing a development system for an air-to-ground missile, a large

number of missiles are to be ordered during the final Acquisition phase. NASA's

requirements are more frequently concerned with a highly complex system.

However, the number of units of that system is frequently much smaller than

that required by the Air Force. That is, in requiring the development of a

man-rated orbital capsule such as the Gemini, NASA requires only a relatively

small number of these units. The Air Force, in ordering air-to-ground mis-

siles is concerned with hundreds or thousands of units. As the Air Force
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becomes more involved in highly complex space vehicles as, for example,

the MOL program, the similarities in requirements between the two services

become much greater.

In addition, the Air Force scheme reflects a strong need to clearly assign

responsibility between the customer and contractor. For the most part, the

Air Force roans, and has sole responsibility for, their operational systems.

NASA's development cycle, on the other hand, appears to place a great deal

of emphasis on agency/contractor interactions and co-working relations. This

interaction is evidenced in all phases of the life cycle.

Report Series Relation

This entire report series is concerned with the topic of system develop-

ment as a process. The report in this series which best describes how the

process is conceived is ReportIA, A Simple Model of a Man-Machine System

Development Cycle.
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V. FUNCTIONS ANALYSIS

The term functions may be found in virtually every science and discipline.

Regardless of its role in other _,_l_o+_a_ in t_ _f_ community, it eer

tainly plays a key role in systems analysis for human factors research. How-

ever, merely because the term is a very important one in human factors

research in general and system development in particular, and merely because

it is used frequently, does not necessarily mean that the term has been pre-

eisely defined nor eonsistently used throughout the aerospace industry, in

some cases discrepancies between and among uses of functions and functions

analysis refleet more than just minor shades of differences; rather, they rep-

resent gross changes in focus and importanee.

Traditionally, the term has been applied as the label for the black box of

engineering drawings. That is, in attempts to diagram or block flow a descrip-

tion of a system (as part of a developmental analysis), the term function has

usually been applied as a label to the blocks thus identified. When the blocks

have been identified, lines indicating interrelationships among blocks are

drawn to complete these diagrams. Very littleattempt is made to specify the

precise nature of these interconnecting lines. They may be lines of communi-

cation, data flow, or indicate direction of a process. At the other extreme,

recent investigation of functions and functions analysis has led to a high de-

gree of specification of the lines interconnecting the blocks, with a parallel

devaluation of concern with precise labelling of the block itself. In these latter

eases, the process of defining the system is seen to be most usefully performed

by identification of the interconnecting lines or "states ''Irather than the block

itself.

The principal purpose of this report was not to provide a critical

analysis and comparison of the terms currently used in the aerospace industry.

Rather, the goal of the report was only to present the terms and definitions of

terms and concepts currently in use, and relate these terms to the concepts

1
Cf. "state" Report IA.
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presented in the other reports of this series. Consequently, the definitions of

functions and related terms represent only those in common use, with no at-

tempt to be complete in presenting every possible definition.

Three major topics are presented in this ehapter: functions (personnel),

functions analysis, and design requirements. These three terms are seen as

the major focal points for functions analysis concept formation.

Functions

Functions are generally considered to be the major components (or sub-

sections) of a system. These components are usually, but not necessarily,

expressed as operations or processes rather than specific equipment or tech-

niques. The nature of the functions identification within the system is, in part,

contingent on the reason for making the identification. If, for example, the

need is to identify contributing subcontractors in the construction of an opera-

tional system, functions may be identified on the basis of development and

manufacture of each of the associated subcontractor subsystem responsibilities.

If the purpose of the identification is to describe a specific space vehicle, func-

tions may be associated with individual subsystems or components of the sys-

tem as, for example, launch site, ground stations, boost vehicle, orbiting

vehicle. In the case of a complex space system, major functions may be iden-

tified by classification on several dimensions. An example of this would be

the major functions used to describe an orbiting laboratory consisting of train-

ing, personnel selection, launch vehicle, orbital configuration, reentry vehicle,

ground support equipment, ground command equipment. In this last example,

major functions were identified to meet the needs of several purposes. In

industry, particularly when major systems are being developed, such mixed

schemes of function identification are frequently used. By doing this, the needs

of personnel development, as well as equipment construction and contractor

responsibilities, can be incorporated into one model.

Documentation of functions identification is usually performed in the form

of block diagrams. The standard technique is that of function flow block dia-

gramming, although other diagramming techniques have been used on occasion.
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This block diagramming technique is one in which each function is assigned a
particular block and interconnecting lines are used to show the relationship
among the identified functions.

The term function is used with special meaning in this series of reports.
It is employed despite the fact that it is used in the open literature with a var-
iety of meanings, primarily because the present precise usage has developed
over time out of a less precise usage which originally had connotations similar
to those in the vernacular.

For the purposes of these reports, a function is a special kind of symbolic

statement. It includes an input state, and an output state. There is a point in
time associated with the input state, and a later point in time associated with

the output state. Further, there is a probability associated with the output
state which assumes that the probability of the input state is one. Functions
are "implemented" by means, that is, by real-world processes, which can be

set in correspondence with functions. A complete intuitive definition of the

term is given in Report I and a complete, precise definition is given in Report
IB.

Functions Analysis

Identification of functions represents the major component in conceptual-

izing the system to be developed. Analysis of these functions is performed in

order to determine how each function can best be performed in the system,

and to consider feasible alternative combinations that will lead to optimizing

the output of the system. While there are a number of component analyses

and procedures that enter into the analysis of functions, the use of any one or

combination of these procedures is largely contingent on the specific applica-

tion involved. Functions analysis is embedded in the process of systems anal-

ysis and as such has associated with it concomitant analyses of system

requirements, constraints, and specifications. In addition, as a part of sys-

tems analysis, expensive review and development of criterion measures for
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system effectiveness should also be included. Each of these associated
analyses make their contribution to the analysis of function.

As performed currently in aerospace system development, functions analysis
is comprised of two major tools which operate hand-in-hand. These tools are
functional flow block diagramming, and verbal descriptions of the contents of
each major identified block (RAS). Within these verbal descriptions, whether
they are called requirement allocation sheets or some other term, are iden-
tified the component activities within the function, training requirements, spe-
cific constraints, design concepts, and an estimate of the contribution to

system effectiveness.

The verbal descriptions are predicated onthe function flow block diagram-

ming. When the descriptions have been completed, the description of the func-
tion, in which component functional activities and requirements have been
identified,can then serve as block identifiers for the next lower level functional
flow block diagram. Thus, by alternating between functional flow block dia-

grams and verbal descriptions of the functions or blocks, each iteration car-
ries the functions analysis to lower and lower levels of abstractness and to

greater specificity. This iterative process is continued until at some point
concrete means decisions, i.e., man-machine allocations, can be made.

Functions analysis, then, is essentially any technique wherein an abstract

system, defined in terms of output state requirements, is subdivided into smal-

ter elements of performance and ascribed functional means, rather than physical

means. The primary object of functions analysis is to analyze the system

means conceptualized at the next higher stage of development, and to delineate

requirements and constraints which become new design problems for the next

lower level.

For the personnel subsystem, it may be seen that functions analysis is at

the nexus of many--if not most--of the analytical techniques employed within

systems analysis. That is, requirements analysis, human engineering con-

siderations, identification of man's capabilities, specification of equipment

capabilities, all relate to and are predicated upon the functions analysis pro-

cess. Unless the functions analysis gives appropriate consideration to each
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contributing datum, the resulting man-machine allocations cannot be considered

optimum. Task analysis, training equipment identification, and design specifi-

cations are all contingent on the adequacy of the functions analysis.

Report Series Relation

The term functions analysis is not employed in this series of reports as

a formally defined term. However, a term which is defined--partitioning--is,

in one sense, similar to functions analysis. Both functions analysis and par-

titioning are operations which result in an expression of the system of concern

in terms of a larger number of component functions. In the case of partition-

ing, the result is always a set of functions and their relationships in which

each function is defined in terms of input and output states in the same manner

as that employed to identify the functions that were partitioned. Thus, the re-

sult of partitioning is a new set of symbolic function statements.

Design Requirements

In the current systems literature, a variety of definitions appears for the

term design requirements. Differences among these definitions represent

changes in scope and focus rather than substantial changes in direction of

focus. That is, the distinctions among these definitions represent emphasis

on various levels of specificity rather than a major change in the substantive

content of the definition. At the systems level, design requirements are de-

fined as the specification of system performance and are general specifications

establishing the requirements and criteria applicable to all system equipment.

Such specification has major utility and suitability for further technical devel-

opment and segregation of contract responsibilities. Eventually these require-

ments, or system specifications, present the total requirements for system

design and development including test requirements. During initial system

development these requirements are not considered fixed, but rather must

reflect all changes resulting from major decisions regarding system perfor-

mance and design.
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At a more specific level, design requirements may be defined as that

portion of the systems analysis produced by requirements allocation. This

allocation is an analysis of each function or group of functions depicted on

functional flow block diagrams. Considered under design requirements for

that analysis are the function description, specific design characteristics,

design constraints, operability or effectiveness, and interface requirements.

Function descriptions specify the objective of the function, the activities

associated with performance of the function, and the duration of the function

in sequential order (timelining). Specific design characteristics specify the

input/output performance values, allowable quantitative tolerances, and main-

tenance requirements of the function. These characteristics are defined as

requirements and limitations imposed by the function and are derived from in-

dividual elements of the function. Design constraints are defined as external

functional requirements and limitations which constrain or impact the

design for the function being analyzed. Examples of constraints include time,

power, weight, physical dimensions, environment, and human performance

capabilities and limitations. Operability or effectiveness includes measures

relating the performance of the function in question to the overall system-

effectiveness model. As a rule, effectiveness requirements are specified in

at least four categories such as reliability, safety, maintainability, and trans-

portability. Interface requirements refer to external function and technical

requirements imposed on other functions or equipment, or imposed by other

functions or equipment which do not constrain the design of the function being

analyzed. These interface requirements can be, and frequently are, shown

as lines on function flow block diagrams connecting the function in question

and its associated functions.

It may be seen from the above that the process of specifying design re-

quirements is one of starting with specifications on the system level--usually

provided by the customer--and in the process of functions analysis, developing

more and more specific requirements. However, it should be obvious that the

degree to which specific design requirements are compatible with initial sys-

tem requirements is determined by the initial development of the functional

relations to meet the requirements imposed by initia] conceptual design of the

system, and determination of system requirements.

278



Report Series Relation

In the current series of reports, a function definition is in terms of input

and output states and probability of output. Thus, a function definition might

be caiied a design requirement. However, the term design requirement is

used in common practice with other connotations. Thus, design requirement

and function definition are not interchangeable.
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VI. DESIGN CONCEPTUALIZATION (MEANS ALLOCATION)

Design Conceptualization has come to mean the methods, tools and

concepts involved in the decision to allocate functions to specific equipment

and/or humans. One may distinguish between a functional description of a

system--the conceptual manner in which the system is to operate--and a des-

cription of the equipment and personnel specified by the system to provide

that performance. This latter specification of personnel and equipment is

usually termed means in current usage. This chapter is concerned with the

concepts related to the decision point at which the system designer makes the

transition from functional descriptions of the system to the means description.

This decision-making area is commonly referred to as means allocation.

Taking means allocation as a central theme for the chapter, four major

terms are discussed: functions allocation, cost effectiveness, system con-

straints, and personnel equipment data. For the most part, these terms and

the concepts implied by the terms may be related to other areas of activity

within the system development cycle. However, they are most commonly used

within the context of means allocation.

Functions Allocation

As it is generally used in the aerospace industry, function allocation is

the process of assigning system performance to personnel, equipment and

facilities in such a way as to maximize the effectiveness of the system. This

allocation process is also called man-machine allocation, or means decisions.

In performing this allocation, consideration is given to characteristics of man

and machines so as to maximize the utility of both the man and equipment com-

ponents. Functions allocated to equipment are later analyzed and detailed to

permit identification of specific contractor end items for initial hardware de-

sign. Functions allocated to human components establish a basis for identify-

ing specific elements of human behavior and for analyzing the tasks, procedures,

training and selection necessary. Generally stated, the goal of functions allo-

cations is to establish the design requirements of the system.
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Typically, the allocation process comes after the iteration of functions

analysis, via function-flow block diagramming and requirement-allocation analy-

sis. Each iteration of the analytic technique increases the specificity of com-

ponents identified. This is done until particular requirements, constraints,

and specifications have been produced to permit precise allocation of the pro-

eess included within the function to men or equipment. At such a point, either

task analysis is initiated or, in the ease of equipment-only allocations, design

sheets are begun. The total system is divided into smaller elements of per-

formance by analyzing the requirements constraints to determine required

performances.

The term functions allocation is frequently associated with the specific

process of assigning means, or a combination of many means, to an individual

system element. The term design conceptualization is sometimes used rather

than functions allocations primarilybecause the latter may be more restrictive.

The term means or function allocation is associated with the specific process

of assigning means; design conceptualization is used primarily in an attempt

to broaden the scope of the allocation process. Design conceptualization is

defined as the development of the design concept.

Report Series Relation

In this series of reports, it is demonstrated that functional specification

must precede means specification. This being the case, after a function has

been specified, the problem of the designer is to assign a means to the function.

This process may be called means allocation.

In some cases, the process of means allocation will result in the deter-

mination that the system under design will include general purpose means

such as humans, computers, power supplies and the like. Whenever a general

purpose means is called out (especially a human) and is justified in terms of

overall system cost and quality, then it is usually highly desirable to take full

advantage of the general purpose means by loading it to capacity--that is, by

assigning to it responsibility for carrying out functions other than those which

gave rise to its selection. This process of allocating functions to an already
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identified means may be called functions allocation. Thus, functions allocation,

as it is used in this series of reports, is a process which is, in a sense, the

inverse of means allocation, and it is employed only when general purpose

means have been justified for inclusion in the system under development.

Cost Effectiveness

Generally speaking, there are three basic levels of cost-effectiveness

analysis. They are: (i) selection of mission, (2) selection of competing sys-

tems, and (3) selection of optimal resource use.

The first level is typically performed by the customer rather than the con-

tractor. The output of this analysis is a statement of what the program is to

accomplish in terms of output requirements for the system to be developed,

and the conditions and geographical locations within which the outputs are to

occur. The results of the first analysis should define what is required to be

done rather than the means employed to accomplish it.

The goal of cost-effectiveness analysis is to provide for the optimum com-

bination of system elements such that the system requirements will be met with

a minimum expenditure of cost and a maximum effectiveness. This optimiza-

tion process takes place during the third mentioned level of cost-effectiveness

analysis, and consists primarily of synthesizing alternate means of meeting

stated objectives, evaluating them, and selecting the combination which secures

the most favorable cost and effectiveness relation. Integral to the concept of

cost effectiveness is a concern with determination of appropriate parameters

for evaluating various system means. Table I shows examples of cost-effec-

tiveness criteria in various areas of endeavor. It may be seen from this table

that the nature of endeavor determines, to a large degree, the kind of criteria

applied.

The capacity to optimize the system on any criterion ( or criteria) is con-

tingent on the availability of alternate means of meeting requirements. Alter-

nates include specific means, design approaches, and techniques or changes

in concept which can be used to meet the stated system requirements within

the constraints imposed by the development system. Requisites for initiating
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TABLE I

EXAMPLES OF COST-EFFEC TIVENESS CRITERIA
(After WSEIAC, F[nalReport of Task Group IV, ref. 9)

Criterion Area of Application

Buildings

Transportation

Communication dollars per

Power dollars per

Gas (natural) dollars per

Farming dollars per

Launch vehicles dollars per

Orbital vehicles dollars per

operation

cost (dollars) per square foot

dollars per passenger mile

message unit

kilowatt hour

cubic foot

square mile

pound payload in orbit

hour of successful on-orbit

cost-effectiveness analyses are specified system requirements, constraints

and environmental conditions within which the system is to perform, and fea-

sible alternatives for means, procedures and techniques in the development

of the system. The general methodology of this analysis is as follows.

The first step in organizing data necessary to construct cost-effectiveness

models and perform the analysis is to determine the criteria to be incorporated

within the cost-effectiveness model. While every attempt is made to quantify

the criteria selected and to choose quantifiable criteria, the choice of criteria

is frequently influenced by judgment. Generally, system analysis proceeds

concurrently with cost-effectiveness analyses and specifically with the deter-

mination of criteria to be used in cost-effectiveness analysis. Much of the

system data produced by the system analysis impacts on and has relevance to

the formulation of cost-effectiveness criteria.

The second step is the identification and synthesis of alternate means of

meeting system requirements. Often the focal point for identification of al-

ternates is the functional level immediately preceding the man-machine alloca-

tion level. While at this level no specific means have been determined,

requirements for design and design conceptualization have taken place. There-

fore it is an appropriate level in the analysis to suggest and identify alternatives
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that have potential value. Within the context of this level of analysis, alternatives

which may be suggested can immediately be fitted to the requirements called

out by the system.

The next step in performing cost-e_fectiveness analysis is to determine,

for each alternative, the significant variables which must be considered in

order to optimize alternate choices. Clearly, although there are many poten-

tial variables, only those which are significant to cost, resource availability,

or system effectiveness should be chosen. Typical variables influencing cost-

effectiveness evaluation of alternatives in a space system are cost, weight,

payload carried, mission duration, time requirements, reliability, maintain-

ability, and safety.

Both cost and effectiveness vary as a function of a number of parameters

interrelated in highly complex fashions. In order to coordinate the parametric

core!ationships and exercise the variable nature of cost effectiveness, these

parameters identified in the previous steps are integrated into a mathematical

model, or set of mathematical models. The models may take a number of

forms. Those most frequently recommended are the profit, cost-effectiveness

(level) ratio, and cost-effectiveness (long-term) ratio models. There are ad-

ditional models, as there are variations of these models, used currently. How-

ever, those named above are the most frequently recommended models for

establishing basic cost effectiveness. For any model used the general charac-

teristics must be as follows:

. All assumptions required for the model must be stated explicitly and

supported by empirical evidence.

. All major variables to which the solution is sensitive should be quan-

titatively considered. Nonquantifiable variables may be accounted

for by modification of the solution rather than direct incorporation

into the model.

. The model should, to the degree possible, represent the true situation.

If this is impossible for all except subparts of the model, the subparts

may be pieced together through appropriate modeling techniques as,

for example, by use of various simulation Procedures.
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4. Probabilistic uncertainties existing in the model as a result of

system alternatives, or uncertainties with respect to the nature of

the operational characteristics of the system should be investigated

by some statistical technique such as risk analysis, functions of

random variables theory or Monte Carlo techniques.

5. The ultimate test of a cost-effectiveness model is whether it results

in the selection of the best system. There is some question whether

this requirement of a cost-effectiveness model can ever be met ob-

jectively. However, the answers to certain questions which may be

posed to the model can disclose weaknesses that may be corrected.

Some questions which may be asked that suggest, if not actually test, the

validity of the model are: (cf. WSEIAC Final Report of Task Group 4, ref. 9)

i. Consistency--Are results consistent when major parameters

are varied, especially to extremes?

2. Sensitivity--Do input variable changes result in output

changes that are consistent with expectations?

3. Plausibility 1--Are results plausible for special cases

where prior information exists ?

4. Criticality--Do major changes in assumptions result in

major changes in the results?

5. Workability--Does the model require inputs or computational

capabilities that are not available within the bounds of current

technology ?

6. Suitability--Is the model consistent with the objectives:

i.e., will it answer the right questions?

Throughout the above discussion no specific reference to personnel sub-

systems was made. Ho_cever, it should be obvious that cost effectiveness may

be intricately involved with the development of personnel subsystems, particu-

larly with respect to the allocation of functions to personnel or equipment.

T
This might be extended to include compatibility with existing models.
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However, for such allocations to have a major role in the construction of

appropriate variables and parameters within the cost-effectiveness model,

huiIlan perforn_ance _'" ^*"lun_1on_ must be associated with quantitative system-

effectiveness measures. To the degree that such measures are not usually

applied in current developing systems, the impact of human performance and

the personnel subsystem development on the total cost-effectiveness trade-

offs of the system must necessarily be slight.

Report Series Relations

Terms such as cost effectiveness, cost utility, and cost benefit are not

used in this series of reports except in general discussions where precision

of usage is not required. Where precision is required, the coordinates em-

ployed are named Cost and Quality. As in the case of cost effectiveness, the

Cost coordinate is a resource coordinate. It is in the second ' _"_Quality) coordi-

nate that a specific difference in implication is seen. The Quality score as-

sociated with any system solution is determined by considering external effects

of the system rather than the internal attributes. Thus, the formula for ob-

taining the Quality score for any system is independent of the means by which

the system is implemented. In the case of effectiveness (including system

effectiveness and military effectiveness), measurement frequently gives specific

.... plconsiuerauon to the means eni oyed and r_u_*_ in"a _,_v....._,_al ,_+_,,_cannot h_

used to measure the goodness of vastly different alternative systems, all of

which are candidates for solving the same problem.

For a complete definition of Quality score and the concept of the Cost,

Quality space, see Report IA.

System Constraints

System constraints are the environmental, resource, cost, and time limits

imposed on system design by the state of the art or by the procuring activity.

Identification of these constraints is typically a part of the analysis of system

requirements. As a general rule, the constraints are derived from sources

external to the system in question. That is, these are not constraints imposed
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by a particular man-machine allocation; they are constraints imposed by

specifications of the system context--the cost, resource, political and man-

agerial milieu.

Report Series Relation

In this series of reports, a constraint is defined as an intentional limita-

tion on the freedom of the designer to select system means.

Personnel Equipment Data

Personnel equipment data (PED) are centrally controlled task and equip-

ment information that define the personnel and equipment interface within a

given development system. It is a systematic program for collecting and analyz-

ing data (and only that data) which will support the personnel subsystem func-

tiDnal areas. The PED does not collect or generate additional systems data;

rather, it is a context for analysis of existing system engineering data in terms

of the data implications to human performance.

These task and equipment data are used to:

i. Develop safe and effective equipment designs;

2. Provide basis for training plan development;

3. Develop performance criteria; and

4. Provide basic information to support development of manning require-

ments.

Information provided within the context of task and equipment data is not

intended to duplicate other data provided by system engineering documentation.

Rather it is a label applied to particular uses to which previously obtained data

may be put.

Report Series Relation

There is no special term used in this series of reports that is equivalent

to personnel equipment data. In fact, in the layout of the development cycle
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model a somewhat different grouping of data relevant to interfaces is employed.
In the model, interface data include personnel]personnel interface data as well

as personnel/equipment data, and the solution of the interface problems so de-
fined is considered within a single development activity. On the other hand, in

the model, interfaces between operator performance and prime equipment are

considered separately from interfaces between maintenance technician perfor-

mance and maintenance equipment. The separate consideration of these two

classes is necessary because the different classes of interfaces are defined at

different times in the course of development.
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PRECEDING PAGE BLANK NOT FILMED.

VII. PERFORMANCE SPECIFICATIONS ANALYSIS

(TASK ANALYSIS)

Subsequent to an analysis of the functions, requirements, and means

allocation of the syste_m_ being developed, is the analysis of the tasks identified

for the personnel to perform. These tasks include both maintenance and op-

erational activities of the human components in the system, as well as any

support or back-up activities to be provided.

Task analysis per se is a term applied both to a concept--in the sense of

identifying a type of analysis that must be performed during the system devel-

opment process--as well as a set of techniques, methods, and tools for pro-

viding this analysis. In this report the interest is primarily in the concepts

related to task analysis rather than the specific tools that might be employed

to provide the analysis. The tools are in and of themselves interesting and

warrant discussion in a methodologically-oriented report, rather than in a

conceptually-oriented report such as this.

Two major topics are discussed in this chapter. One is a broad discussion

of task analysis. The second is a discussion of the qualitative and quantitative

personnel requirements information (QQPRI) serving as a general context for

the task analysis. QQPRI is a broad concept covering a variety of data. How-

ever, ..most _ +_ basic a_+= e,innnrtin_ QQPRT development is senerally ob-

tained from one form or another of task analysis.

QQPRI

Qualitative and quantitative personnel requirements information (QQPRI)

is personnel subsystem data used to plan the kind of personnel needed in the

system, the skills and training required, and the performance required of

these personnel. It identifies the man-machine interfaces in terms of opera-

tion, as well as the nature, scope and kind of maintenance activities imposed

by the system design. This term had its origin in USAF documents but has

come to be generally applied in the aerospace industry. It differs from per-

sonnel subsystem planning primarily in that it focuses on the systematic

291



identification of job classifications required by the system, identification of

organizational tables and manning requirements, and on training aspects of

the system. As a rule QQPRI does not produce detailed task equipment data.

These data are results of other kinds of analyses and would be developed dur-

ing the preparation of QQPRI only if adequate data have not already been made

available. QQPRI is a broad term which covers a number of specific informa-

tion elements. These are:

i. System description--a brief functional description of the purpose of

the system in question. Included are operational characteristics of

the system and concepts underlying operations and maintenance. Des-

cription of anticipated operation and system support is illustrated by

mission profiles, flow diagram, etc.

, Summary of maintenance and operations--a detailed analytical sum-

mary in time sequence of all major jobs required to operate and

maintain the system. This summary identifies both maintenance and

operations personnel by number and by service job classification.

, Position descriptions--a report of the personnel required to operate,

maintain and control the system by service specialty code covering

the duties and responsibilities of each position. Generally, a posi-

tion in this sense means each operator or maintenance personnel re-

quired by the system, irrespective of the jobs and tasks performed

by the system. That is, a given subsystem may require 30 or 40

tasks to be performed and specify only five individuals to perform

those tasks. Each person in the course of a normal work shift is

considered a position. Position descriptions include a list of the

principal duties and tasks associated with the position, the aerospace

ground equipment used in accomplishing maintenance tasks or sys-

tem equipment which must be operated by operational personnel, the

amount of time required to accomplish each duty or task, the loca-

tion of each task performed and an estimate of how frequently each

duty and task must be performed, and the proficiency level at which

each task must be performed.
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. Preliminary manning estimates--the manning concept for the system

is presented, in which all conditions considered in preparing the es-

timates, such as operations and maintenance criteria and any special

conditions, were identified. In addition, actual manning estimates

are presented in tabular form in manning tables and preliminary

organizational diagrams•

Report Series Relation

It can be seen that this concept includes a large variety of data and design

outputs generated at different times in the course of a man-machine system

development cycle. Some of the data included within the collection called

QQPRI are truly necessary for the prosecution of a successful development

cycle; other data may only be of interest. In this series of reports there is no

time at which it is necessary or useful to refer to the specific collection of

data implied by the term QQPRI, and therefore the term is simply not employed.

Task Analysis

Task analysis is a term that has been used for the past 15 years to iden-

tify a particular kind of analysis or sets of analyses. Although the term is

used frequently, there appears no general industry-wide agreement as to the

precise definition of the term, nor the specific steps to be taken in complet-

ing such an analysis. The official Air Force definition of task analysis is pro-

vided inAFSC Manual No. 80-3 (ref. 3), and is ...

• . . an analytic process employed to determine the specific
behaviors required of a human component in a man-machine system.
It involves determining, on a time base, the detailed performances
required of man and machine, the nature and extent of their inter-
actions, and effect of environmental conditions and malfunctions.

Within each task, behavioral steps are isolated in terms of percep-
tion, decision, memory storage, and motor outputs required, as
well as the errors which may be expected.

While other workers in the field define task analysis in slightly different ways,

the Air Force official definition is probably as good a representation of the

definition as can be found.
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Within the context of the above definition, task analysis follows directly

from functions analysis. By the conclusion of the functions analysis, man-
machine allocations have been made. A further detailing of the activities per-

formed by the man components of the system are reflected in the task analy-
sis. A feature of all task analyses is a statement of the task itself. This is

usually given in terms of an action verb description of what the operator is re-
quired to do, such as adjust equipment, analyze data, assemble equipment,

calibrate equipment, etc. Additional categories of information are also ob-
tained as part of the task analysis. Categories frequently found in task analy-

ses are as follows:

lo Ambient environment--This refers to the nature of environment in

which the task is performed, and as a rule ranges from optimum

(that is, optimum on all temperature, pressure, humidity param-

eters affecting the human) to not acceptable without protection.

o Equipment characteristics--This refers to the nature of interfacing

equipment with which the operator will have to perform. This dimen-

sion usually varies from equipment making no unusual demands upon

the human capacity to design requiring performance at the limits of

human capabilities.

° Mental demands--This category, or one comparable to it, implies

the measure of mental or intellectual demands imposed by the task.

It varies from small to extensive, and is meant to include tasks that

are essentially highly physical with no active mental participation

required, to those that require a high level of mental effort such as

performing mathematical computations in .neWs head, extensive de-

cision making, or critical reasoning.

. Physical demands--This category relates to the demands imposed on

the operator by the task in terms of physical requirements. As a

dimension it ranges from small or none to extensive demands. Exam-

ples of this might be those physical demands of sitting at a desk for

eight hours a day versus those requiring extensive use of shovels, or

running, etc.
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u Hazard exposure--Refers to the nature of hazards to which the

operator would be exposed in the course of performing this task.

It ranges from none to extensive hazard. Examples might be moni-

toring a mission console on a land base versus performing extrave-

hicular activities in orbit about the moon.

e Task criticality--Refers to the impact of the task on the system-effec-

tiveness model. It ranges from noncritical to inoperability of the

system.

Additional categories frequently used in task analysis require information

about the nature of job classification of the individual selected to perform those

tasks, the training requirements imposed by that task, and the skills and know-

ledge required bythat task. In some instances, estimates of task performance

time and performance frequency are also called out during task analysis.

As mentioned, there is no commonality in use of procedures to perform

a task analysis. In many cases the nature and detail of the task analysis is

fitted to the requirements of the system itself or the contractor performing the

analysis. In some cases task statements are derived by a continuation of the

functions analysis technique, while in other cases functions analysis is term-

inated as soon as man-machine allocations can be made and, on the basis of

man-allocated functions, tasks lists are prepared. In many cases, particu-

Iarly in the development of large systems, tasks or task statements have their

origin in the requirements allocation analyses performed in conjunction with

function-flow block-diagramming techniques. To further complicate matters

there is no common acceptance, specification, or definition of precisely what

is meant by a task. In the literature of systems analysis, one may distinguish

tasks, procedures, and steps. However, while one researcher may propose

an empirical distinction among these terms, the distinctions will not neces-

sarily hold across other task analyses performed on different systems.

The contribution to systems engineering made by task analysis is critical

to further development of training requirements, man-machine interface de-

sign requirements, and assessment of time requirements to perform. Conse-

quently, the incompatibility among and between procedures for performing task
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analysis imposes a severe limitation on the degree to which systems may be
compared with respect to human performance. As a simple example of this,

task analysis may be either stimulus- or response-oriented (although the
response orientation is far more prevalent}. The stimulus orientation approach

is to determine the demands for personnel performance. This approach is
valuable for developing training equipment which imposes demands on the
trainee which are functionally equivalent to the operational situation. The
response orientation approach is to determine and document the performance
actions. This approach is valuable for human engineering and the development
of job aids. Comparison of a stimulus-oriented and response-oriented task

analysis, however, for different systems is virtually impossible.

Report Series Relation

It may be seen that task analysis is essentially a tool for developing de-

tailed functional descriptions of what man must or could do in implementing

functions assigned to him. A task analysis usually carries along with it, of

course, other information such as identification of the environment in which

performance must be carried out and identification of the specific hardware

to be employed. As a tool, it is quite appropriate that it be employed in a

system development cycle whenever it is useful. If one considers the develop-

ment cycle model employed in this series of reports, it appears that task anal-

ysis could be employed with profit as a tool to assist in the implementation of

several activities in the develoPment cycle. However, when it is used in dif-

ferent activities, it will, of course, be used to generate different data. For

example, it may be used as a tool to develop the data necessary to support the

recommended action for crew size. It may be used again as a tool to develop

the data necessary to support the recommended personnel product solution to

the maintenance problem. Again, it may be used to develop the detailed data

necessary to design and fabricate training materials and job aids.
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VIII. SYSTEM SYNTHESIS

Thus far in this report the concepts described have been concerned

primarily with general descriptions or descriptive devices for the system or
subsystems and/or analytic devices for analyzing a system or portion of a sys-

tem into its component parts. System synthesis is concerned primarily with
integrating the data developed during analysis procedures to form the basis
for a more global understanding of the workings of the system as a whole.

The term synthesis itself may be viewed as having two connotations. The
first is a definition of the term as an antonym to analysis, and refers to the
process of starting with the highly specific components of a system and, by a
process of combining and building, ultimately ending up with the top-level func-
tional descriptions of the system. The second connotation of synthesis refers
to the process of integration across system data in order to derive conclusions
or descriptions of the system based on a unification of components. Distinc-
tion between these two concepts may be seen readily in the following hypothe-
tical paradigm.

SYSTEM REQUIREMENTS

...,_,___,_-- DE S I G N CONCEPTUALIZATION

ANALYSIS --_/__ .... ....:-'.::.:'_-_:" SYNTHE',SIS
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If one views the process of system analysis as appearing graphically as a

triangle resting on its base, with general broad functional descriptions of the

system at the top of the pyramid and specific descriptions and requirements

at the base of the pyramid, then analysis may be seen as the process of going

from the top of the pyramid to the bottom. Synthesis may be seen as the pro-

cess of going from the bottom to the top. In this case, synthesis would be used

in the first connotation of the term. If at any horizontal level of description all

component data were combined to form some new analysis or understanding of

the system, synthesis would be used in its second integrating meaning.

Four major topics are discussed in this chapter. They are system syn-

thesis, contingency analysis, functions criticality, and simulation modeling.

In these four topics, both connotations of the term synthesis are apparent.

Of particular interest in this chapter is the discussion of simulation modeling.

This term and the concepts related to it are of major interest in current sys-

tem analysis as a means for providing the integration and global understanding

of the system. The term is presented in this chapter not as a representation

of a technique widely employed in the aerospace industry, but rather because

of its broad potential impact in the synthesis of complex man-machine systems.

System Synthesis

Synthesis is the process of combining performance entities within a sys-

tem to form a set. Functions analysis is the generally accepted process of

partitioning the system into smaller units, however there is no generally ac-

cepted method of synthesizing elements.

In the course of preparing system documentation for the development of an

operational system a number of essential aspects of that system require data

produced from several analytic activities. These data must be synthesized

across the system documentation for direct application to a given problem.

Several examples demonstrate this point. In identifying and developing both

operational and maintenance training procedures it is necessary to collect

data from several analyses performed in system documentation. To determine

requirements for simulation modeling or detailed end-item design requirements,
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synthesis of system documentation must be performed. This is not to say

that a system cannot be analyzed in order to specifically obtain training simu-

•_.u11 or design requirempnt data. However. such analyses would represent

an enormous redundancy in effort as the information supporting those analyses

would already have been collected for other purposes in the normal course of

system development documentation.

Synthesis may be performed at virtually any level of system development.

The above examples illustrate synthesis at levels of specificity which can be

and frequently are quite detailed. Identifying reference system requirements,

design conceptualizations, or verifying adequacy of the design represent sys _

tern synthesis performed at a relatively high level of system abstraction (that

is, at top levels of specificity).

As stated earlier, there exists no one technique for performing system

synthesis. A major reason for this lack of technique is the fact that system

synthesis, as may be seen in the above examples, is performed to accomplish

a number of different purposes. The techniques used to perform the synthesis

are there.fore highly contingent on the specific purpose in mind. However,

there are several general methods which are frequently employed as part of

a system synthesis effort that warrant discussion, not so much as the tools of

system synthesis but as broad methods employed during the synthesis effort.

These methods are, as a rule, idiosyncratic to a particular purpose but may

be discussed in a more general sense. Further discussion of these methods

appears in subsequent sections of this report. Included are contingency analy-

ses, determination of functions criticality, and simulation modeling.

While there is no one synthesis tool now used throughout the aerospace

industry, it is possible to describe some of the characteristics of such a tool.

Generally, the characteristics are included in the following. These charac-

teristics are in addition to those implied by roles of synthesis in the above

discussion.

True and apparent availability.--The tool must provide a means for mea-

suring both true and apparent system availability under various conditions of

operation. True availability represents the actual condition of the system
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despite its declared state, i.e., despite what it may appear to be. Apparent

availability refers to the declared state and will not be compatible with true
x

availability if the malfunction detection system is less than perfect. Measure-

ment of true and apparent availability represents the minimum criterion mea-

sures the tool must have ifthe maintenance variables are to be related to the

total system. An additional capability which would be highly useful would be

to determine the probability of success of the various types of missions required

of the system.

Flexibility. --The tool must be flexible to allow the operation of the system

under various conditions of the maintenance and/or operational variables. In

order to provide a means of relating these variables to the criterion measures,

the variable must be controllable. The maximum extent of control is debatable.

At a minimum, the tool must be capable of determining the effect of a signifi-

cant change of the variable on the total system.

Intermediate criterion measures. --The tool must provide a means of mea-

suring intermediate criterion measures such as maintenance turnaround time,

maintenance man-hours per operating hours, fuel consumption, and resource

utilization. These measures will be necessary to determine the relative cost

of maintaining a given level of availability.

Relative importance of problems. --The total number of problems possible

in the development of a complex man-machine system is so large as to be al-

most incomprehensible. Any variable and/or resource produces at least one

potential source of problem. The personnel involved in the development of a

system constantly face the problem of predicting the impact of the problems.

Personnel time and money are limited, and expensive expenditures on prob-

lems of relative unimportance would not assist in an efficient development of

the system.

The tool must provide a method of relating resources or variables to the

system operation primarily in terms of their relative effect on criterion mea-

sures. The decision-makers can then consider problems within the context of

the total system. This should not be construed to mean that the "relative

300



contribution to the system" should be the sole criterion for judging the

importance of problems. Numerous factors determine whether problems

snoulu be investigated. These include _'_ - *" _,e .....con_iuex a_on of *_ _--_*_

the level of confidence one has to the extent to which the problem has been

identified, acceptability by other customer groups or agencies, etc. However,

one of the major considerations should be the relative effect of the potential

problem on the system. If the tool can assist in determining this relative ef-

fedt, it will aid considerably in increasing the effectiveness and efficiency of

the development sequence.

Support trade-off studies. --Two major categories of trade-off-study

parameters are measures of value and cost. Value, in this case, refers basi-

cally to its contribution to the overall system performance. Ifthetool provides a

useful means for synthesis, it should also meet part of this objective by pro-

viding a measure of value in a method of relating variables and resources to

system criterion measures. The tool should also provide some means of

determining at least the utilization cost which can then serve as an input to

the trade-off study.

The tool should also provide a means of determining whether trade-off

studies are merited. If the tool can meet the objective of determining the rel-

ative importance of problems, it should also be able to meet this objective.

Information on the basic characteristics of the system such as the input-output

ratio may affect the variables on this ratio. The extent to which the variables

interact in their effect on the system criteria, true distributions, etc. should

be useful in determining whether trade-off studies are required, as well as

conducting trade-off studies. It is important to recognize that this is not a

tool for the total trade-off job. It simply provides the data which could be use-

ful in conducting trade-offs and to verify the results, i.e., to support trade-

off studies.

Support allocation of requirements and/or means. --To assure proper

development of the system, it is necessary to provide quantitative criteria

which can serve as design specifications. It is generally true that quantitative

criteria for the personnel subsystem portion of various systems is practically
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nil. Realistic and valid requirements are needed both for the performance

time and the allowable ranges of personnel performance errors. Without these

parameters, a design of personnel performances and training tend to be oriented

toward projected interpretation of what man can and/or should be able to per-

form. Total attention can be anticipated for the required reliability of human

performance during either design or training.

Most of the resources in a system can be traded off against each other.

Deficiencies in one type of resource frequently can be overcome by increasing,

or changing, another type. For example, deficiencies in human performance,

or lack of sufficient number of personnel, can be overcome to some extent by

increasing the role of equipment. Similarly, low spare levels of end items

can be maintained by increasing the capability to repair these end items.

The problem of allocation is not a simple one since it must consider the

possible interactions between the numerous variables comprising the system,

and the basic characteristics of the system in terms of its reaction to fluctua-

tions of the inputs. The tool must support the allocation of resource levels,

time and errors. It should be noted again that the objective of the tool is not

to conduct the allocation, but rather to provide support data.

Report Series Relation

In the system development paradigm developed in these reports, systems

synthesis, particularly in the sense of integrating system data, plays a very

important role. Synthesis takes place (and may be seen as specified nodes

in the development model} at the conclusion of major phases of the system de-

velopment. Key points at which the synthesis is provided are:

I. Functional design of prime system;

2. Functional design of additive set;

3. Final means allocations and interface design;

4. Preparation of fabrication models; and

5. Fabrication of the system.
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In addition to the major identified synthesis nodes, integration of data and
products is identified in the model at all points at which data or products are
assembled. In the symbolic development model, all logic symbols "AND" i u-
ply a synthesis or integration effort.

Contingency Analysis

Optimization of system design and personnel preparation programs depends
to a considerable degree on the identification of a practical total performance
continuum required of both equipment and personnel during system operations.
The definition of this performance continuum requires awareness of standard
events, procedures and tasks, and, in addition, probable events and occur-

rences to which personnel must respond during the course of system operation
which are outside the realm of nominal performance. These non-nominal

events are usually called contingencies. Identification of these events is the
outgrowth of contingency analysis, frequently defined as "... that portion of

function and task analysis performed to identify nonroutine situations with
which a system may have to deal, so as to determine any special human per-

formance required by these events: e.g., extreme environmental conditions,
or enemy activities. " (AFSCM 80-3. )

The purpose of contingency analysis is to provide procedures and means
requirements enabling the personnel subsystem to cope with contingencies

when they occur during the operation of the system. Three basic objectives
are implicit in this purpose:

I. Development of information about potential contingent.is at a level of

detail and specificity translatable into design requirements to be con-

sidered in design optimization of means to accomplish each function;

. Derivation of man's role in the contingency situation after system

design optimization, considering cost effectiveness and system ef-

fectiveness;

. Translation of man's role in the contingency situations into skills and

knowledge requirements and integration of these requirements into

design specifications for man.
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Contingency analyses may be seen as having broad ramifications to all

other aspects of personnel subsystem data acquisition. Results of the analysis

may demonstrate requirements for additional equipment, changes in man-

machine interfaces, and changes in training requirements. Because the analy-

sis depends heavily on functions and task analyses data to support its analytic

efforts, it is typically performed subsequent to the other analyses. To allow

for contingency analysis, frequently there is preliminary identification of po-

tential contingencies made during the final stages of task analysis. This iden-

tificationmay be in the form of noting potential malfunctions or potential effects

elicited by improper inputs to the task or improper performance of the task

resulting in degraded outputs.

Central to the conduct of contingency analysis, is the definition of con-

tingency itself. The definition is based on the assumption that nominal tasks

developed during functions and tasks analysis represent the best possible choice

of man-machine interactions and definition of man's activities during the oper-

ation of the system. Contingencies may be defined as an event or occurrence

which results in a system state eliciting: implementation of other than nominal

activities on the part of the personnel, either temporarily or on a permanent

basis; or deletion of any portion of nominal activities involved in the operation

of the system.

Two major conceptual products result from the contingency analysis. The

first is identification of potential contingencies which can give rise to another

than nominal response. These contingencies may, on the basis of the analysis,

be demonstrated to have various effects on the overall effectiveness of the sys-

tem. In the case where the probability of contingency occurrence is high and

the effect on the system outputs is also high, changes or modifications in sys-

tem design may be required to obviate the problems posed by that contingency.

The second product is identification of the procedures required by operational

and maintenance personnel in order to respond to the contingency in a way

least degrading to system effectiveness. Since all major aspects of contin-

gency analysis must be related to the system as a whole and, more precisely,

system effectiveness measures, these measures must be very precisely stated

during the initial formulation and developmental analysis of the system.
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Contingency analysis may serve as a very useful tool in the development
of a system for purposes of integrating the diverse data produced by systems
analysis. It is also extremely important as a device for uncovering the limi-
tations and inadequacies of both equipment andman's capabilities within the
system. In the latter capacity, it may be used as an evaluation tool to identify
conditions present in an operational system that would result in severe degra-
dation of system performance, identification and isolation of those factors

which can cause severe degradation of system performance can, if identified
in the earlier stages of development, be modified so that contingency pro-
cedures would not be necessary. That is, if a particular component in a sys-
tem has a relatively high probability of failure, and if the effect of failure of

that component on the remainder of the system is a severe reduction of system
effectiveness, then measures can be taken in the development of the system to

increase the reliability and/or point availability of that component--by duplexing
it, by redesigning it, or by _L1_11_.1,_

Report Series Relation

Contingency analysis is not a term requiring special consideration in this

sequence of reports. In talking about the system development cycle model,

the term can properly be used in the manner described above. Contingency

analysis must be used in conjunction with reliability analysis to determine

comprehensive requirements for each active loop, and thus for the total addi-

tive set. The initial analysis which establishes the need for an additive loop

does not, however, include contingency analysis, but is based upon a compari-

son of the target probability allocated to a function together with the reliability

of the means by which the function is to be implemented.

Functions Criticality

Functions criticality refers to the effect of any function on the total sys-

tem effectiveness. That is, determination may be made of a function's sensi-

tivity (in terms of output) to changes in input and constraints, on both follow-on

functions and total system effectiveness. This type of examination is frequently

performed at lower levels of function specification. This is because in initial
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top-level and first-level functions descriptions, all functions may be said to

be critical to the completion of the mission. It is only in lower levels exami-

nations that functions may be distinguished in terms of their criticality. Cri-

teria usually applied in assessing the criticality of a function inelude the

following:

1. Will the loss of the function abort the mission?

t Will the loss of the function increase the time, effort, and money cost

of the mission?

3. Will the loss of the function degrade the reliability of the mission?

. What is the relationship between degradation of function input and func-

tional output degradation ?

On the basis of examining each function in terms of the above or similar

criteria, the criticality of each function may be assessed. If itis found that

the function is in fact critical, the function may be further examined to deter-

mine the probability of occurrence of degradation. If the probability is high,

then steps may be taken to augment the functional capability by providing al-

ternate functions or ehanging the nature of functions allocation to increase re-

liability, or redesigning equipment to minimize either the potential degradation

of the function or the relation between the graded input and the graded output.

If, on the basis of the examination, the function is not found to be critical with

respect to the identified criteria, then it may be possible to design the system

so as to eliminate these functions. That is, if a function is found to be not

critical, i.e., not related directly to system effectiveness, then some question

may be raised as to the necessity of performing that particular function.

Examination of functions criticality is usually a part of, or a parallel ef-

fort to, the analysis of contingencies. It requires as baseline information the

functions reliability and system-effectiveness measures. Appropriate levels

for examination would best be centered around those levels in the functional

derivation that are immediately adjacent to identification of man-machine al-

locations. A major output of examining functions criticality is the information
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it provides about the design adequacy of the function. This is most clearly
seen at those levels in the functions analysis where means are identified.

Report Series Relation

The process of determining the criticality of each function in a system

description is important when the description is one which does not connote

the relationship of each component function to overall system probability of

success. Many of the block-diagramming techniques in common use do not

preserve this information and do not permit translation to a system descrip-

tion in terms of probability statements. When a system calculus such as that

described in Report IB is employed, the process of determining functions cri-

ticality reduces in concept to the translation of a function description of the

system into an analogous probability statement. With the help of a computer,

a description of the system in terms of probabilities of functions may be ex-

plored at will to determine the effect of any hypothesized change in reliability.

Simulation Modeling (Computerized)

Simulation models in general have had a long history of application to sys-

tems analysis problems in the development of complex systems. They exist

in a variety of forms, from highly detailed physical models of, say, river-flow

or wind-tunnel modeling, to electronic analogue computers, and, finally, the

complex symbolic digital-computer models. A characteristic shared by all

these forms of simulation models is that they permit a simulation of various

component system factors to be exercised as a whole, thus permitting a var-

iety of factor values to be traded off without the time and cost necessary for

trade-off studies using the completed system or system component. Of course,

an assumption underlying the use of simulation models is that the results ob-

tained from exercising the model may be used to predict performance of the

system.

Inasmuch as a simulation model, regardless of its form, permits the

study of complex factor interactions, it can be an extremely useful tool in the
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development of personnel factors in system development. It is also an

extremely powerful tool for providing system synthesis activities.

While there are several forms this type of model may have, the one grow-

ing in use today is a computerized stochastic simulation model in which the

actual system is both logically and digitally simulated. The model is gener-

ally controlled by basic inputs such as mission demands and mission phases.

The profile of such phases is deterministic in that it is preestablished and

fitted to a digital computer. The stochastic nature of the model arises from

allowing failures to occur in a "random" manner whenever the system or its

various components are in operation. Functions in the model are character-

ized logically, the specific manner of characterization depending on the func-

tion being simulated. Therefore, the basic unit of performance for simulation

must be compatible with the basic unit for the actual system. Functions have

been selected as the basic unit of performance for many of the more recent

models.

The basic functional element of the simulation program is a logical func-

tion which is used to describe any of the functions depicted in the functional

flow diagram. This function is characterized by a set of possible input states,

data vectors describing the function, and a set of output states. The functional

input states are determined by preceding functions. The detail specification

of input-state conditions depend on the level of simulation of all pertinent func-

tions. The function data vector describes the functional activity itself, in terms

of such factors as performance time, error and damage probabilities, and spec-

ifies the resource requirements for the function.

A model is controlled by basic inputs which will vary depending on the na-

ture of the system being simulated. The output of the model is a set of statis-

tics gathered through simulation. There are a number of areas within the

development of the system to which a simulation model may be appropriately

applied to provide system synthesis data. Several of these are mentioned

below.

Personnel requirements analysis.--The personnel requirements analysis

takes place after allocations have been made on individual fuf_ctiolls. Sul_sequ_ntly,
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it is necessary to determine the specific performance required of personnel,

capabilities required for such performances, and the total quantity of person-

nel required for each type of capability. The major portion of this process is

design or a means-all.cation type of task.

A model can be used to help determine the relative importance of the var-

ious functions in a system to the overall system performance. The indicated

relationship between functions and the overa!! system performance can then be

used to determine "criticality" of the personnel role in a given function, which

in turn can be used to establish priorities for detailed examinations. Such in-

formation could be used to establish priorities for task analyses. Task analy-

ses conducted for every function in the system can result in a large amount of

data, a major portion of which may not be useful. Information on the relation

between individual functions to overall system performance may be used to

determine whether detailed examination of the function for personnel perfor-

mance is merited. _A_veas in which a model may provide support include:

lo Indicating the frequency of usage or per cent utilization for each type

of personnel;

o Determining the total number of personnel of each type required to

maintain a given level of availability and flexibility of the maintenance

subsystem; and

. Evaluating any level of personnel types and number in terms of ade-

quacy to meet the availability requirements and/or the contribution

to maintenance turnaround time.

Another manner in which the model can be useful is in providing an initial

estimate of both reliability and performance time required of the personnel.

Ranges of allowable errors and times can be studied using the most pessimis-

tic, optimistic, and most likely estimates for personnel performances. The lack of

any significant difference in system performance using the optimistic and pes-

simistic estimates would indicate the range within which personnel performance

can be conducted and provide a greater tolerance for training. If there is a

significant difference, areas in which further examination should be conducted

by training will have been identified.
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The model may also be used to determine the relative advantages of
different manning concepts. For example, a concept of maximizing the level

of personnel and sharing such personnel across subsystems can be compared

against a concept of using the smaller number of highly-skilled personnel as-
signed to each subsystem. The capability to interchange personnel may be an
important factor in reducing the cost of the system. If personnel are allocated

separately to each subsystem, the total number of idle hours can become quite
extensive. Conversely, interchanging personnel between subsystems can re-

duce the total idle time since part of the idle time for one system can be used

in another subsystem. However, the degree to which the personnel can be in-

terchanged will depend on the differences in capability (consequently, training}

required by the subsystems. The model can be useful in determining the rel-

ative savings realized by interchanging between various combinations of sub-

systems. Trade-offs can then be made by adding training costs data.

A model can also be used to study the utilization of personnel of different

levels for a given function depending on difficulties encountered during that

function. This is an extremely critical use of a model, since one of the major

difficulties encountered by the services is the allocation of high-skill technicians

to functions which do not always require high skills. Using high-skill techni-

cians to perform low-skill jobs is not only wasteful, but frequently results in

significant degradation of morale and, consequently, performance. Further-

more, the lack of usage of high-skill capabilities also results in degradation of

the high skills for which the personnel were originally assigned. The model

can be useful in determining the percentage of high-skill personnel required if

the analysts provide a criterion for determining when high-skill personnel are

required during the performance of a given function. Furthermore, a model

Can provide the relation between personnel performance, time expressed in

terms of error, time and number of personnel utilized per unit of time; system

parameters such as availability and maintenance turnaround time, and other

system variables such as spares utilization, test equipment utilization, etc.

Human engineering. --A model can support human engineering by assisting

in the determination of the relative importance of functions, allowable ranges

of error and time for personnel performances, and the frequency with which

any given function is required. These will indicate the extent to which man
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will interface with his surrounding equipment environment, and the importance

of this interface to overall system performance. The quantitative criteria for

performance time and error should be useful for examining the interfaces. If

performance *'_^_h_ and/or a 11_v. _hl e _n_ ...... r_u_÷_, be low, gre_ter emohasis, should

be placed on human engineering with the interface. On the other hand, if the al-

lowable range of error and time are fairly wide and the frequency of occurrence

is fairly low, extensive human engineering would not be warranted. This does

not mean that general human engineering principles should not be applied, but

special studies of the man-machine interfaces probably would not be justified.

The model can be of further assistance if quantitative estimates are avail-

able on the extent to which the man-machine interface affects performance time

and/or error. By exercising the model, the effect of performance degradation

on overall system performance can be determined and expressed in terms

meaningful _o system designers, such as the effect on availability, maintenance

man-hours per operating hour, etc. Human engineering efforts can then be

concentrated on those areas having the greatest potential for system degrada-

tion.

The relative effectiveness of two man-machine interface considerations

can be studied adequately with the model if the differences can be expressed

in terms of performance and/or _,_. _..T_...........mn_tr_.q_S, however., the human

engineer (or maintainability analyst) will not have relevant data available.

Therefore, it will be necessary to study the problem specifically for the sys-

tem. It is not necessary to have the actual equipment available for the studies,

but time and some mock-up must be provided for such studies if useful trade-

offs are to be conducted.

An inherent danger in initiating a human engineering/maintainability labor-

atory is that the laboratory may be designed to be much more sophisticated

than is required by the system problems. The model can be highly useful in

overcoming this potential problem since it can provide an indication of the

relative importance of various functions, and, consequently, problems within

the functions. The laboratory can then be designed to study problems which
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will have a significant effect either on the performance or the cost of the

system.

Training. -Quantative criteria, such as reliability, for personnel perfor-

mance will not be useful unless training can respond to these criteria. Early

identification of allowable errors and time should be useful to the training per-

sonnel to determine whether in fact they can respond to the criteria. This is

not a simple matter since the state of the art in training is not sufficiently ad-

vanced to allow prediction of personnel reliability. However, it should be use-

ful in training standards and developing proficiency tests which can be used in

the course of training to determine whether the criteria can be met. Further-

more, areas in which training should be emphasized can be readily identified

by the relationship of the individual functions to overall system performance

indicated.

If a range of allowable errors and time can be established, training per-

sonnel can examine the training implications for the most optimistic, the most

pessimistic, and most likely estimates of time and errors. If the training

analysts can identify different training implications, it should be possible to

incorporate training implications in system trade-off studies. If training ana-

lysts cannot identify different training implications, it is quite possible that

training research requirements will be identified; i. e., what research is

needed to allow training to respond to reliability requirements.

Techniques for treating training in a quantative manner are quite scarce

when compared with reliability techniques and equipment design. However,

some relatively valid techniques are available and should be utilized. Pri-

mary emphasis should be placed on the validity of training tests and the place-

ment of such tests throughout the training program. The question of whether

a given training course will meet the reliability requirements can be approached

by considering the information transfer process.

Personnel planning information (ppD. --Studies with the model will provide

useful data for inclusion in the PPI. As indicated earlier, the studies can pro-

vide allowable ranges for time and errors which will be useful in conducting more
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detailed trade-off studies during the system design and prototype substages.
Trade-off data can also include the relative effect of errors in given functions
to overall system performance, and the relation of these errors to cost ele-
ments, such as support equipment and spares utilization.

Among the more useful inputs the model can provide for personnel planning
are the potentialranges of quantity and types of personnel. The range should be

based on anticipated errors and prediction for system variables which would

have a bearing on the quantity and quality of personnel, e.g., mission demand

and reliability estimates. Estimates of both tend to be highly unstable during
the early stages of system development. The model can indicate the anticipated
increase in the number of personnel required with changes of reliability, e.g.,
for 25%reduction reliability with no change of mission demand, 25%reduction

of reliability and 25%increase of mission demand, etc.

A model can also provide other information which will be useful for per-

sonnel planning such as anticipated frequency of various functions, peak man-

power demand situations and other changes of interfacing elements which could

affect personnel planning.

System design. --A model can be used not only to evaluate the adequacy of

inputs from the contractors, but also to check the compatibility of their esti-

mates. Contractors may _,=_ ....,_,,_1_'_ systems .{-...................._ nnn_ntpgr_ted manner unless

valid feedback is received from the service monitors. This is particularly

true for personnel elements, since personnel elements are frequently developed

in an off-line function.

A major problem facing many groups responsible for developing person-

nel elements in industrial firms is the inability to obtain the relevant system

information from their fellow system developers. It is not uncommon that

personnel elements will be based on one set of estimates, spares will be based

on a different set of estimates, and ground support equipment will be based on

a still different set of estimates. There have been cases where all three were

incompatible with reliability estimates submitted officially by the contractor.

The incompatibility frequently continues to exist until the system is actually
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put to use. A model can be extremely useful in detecting such incompatibilities
if the officially submitted data are used as inputs for the model.

A series of model runs can be scheduled each time officially submitted
data are scheduled. Special studies can be conducted in accordance with prob-
lems detected during the scheduled runs. The relevant information should be
related to the delinquent contractors.

Subsystem test and evaluation. --A major contribution of a simulation model

is its usefulness as a tool to evaluate total maintenance or the personnel sub-

system before the actual subsystem is made available. In a sense a model en-

ables continual evaluation of the subsystem throughout its development history,

from its conceptual stage through the various stages of definition, and during

field evaluation.

Subsystem evaluations with the model may continue throughout the field

evaluation program. It is anticipated that unpredictable problems usually

arise during the field evaluation program. The model can be used to deter-

mine the effect of the problems on the system. In certain cases, it is not pos-

sible to measure all of the variables in the field and the model can be used to

determine the variations. The model is also useful for determining the causes

of problems noted in the field.

Report Series Relation

Simulation modeling is an important tool in the development of a system.

It is applicable to the concepts defined and teveloped in this report series.
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IX. HUMAN ENGINEERING--MAINTAINABILITY

When the system has been specified to its basic components, and concur-

rent with the development of man-machine allocations, concepts relating to

human engineering and maintainability are applied. These two terms reflect,

to a degree, the old and the new in system development work. Human engi-

neering as a term and as a technology, has been applied to system and subsys-

tem development for a relatively long period of time. One may trace its

origins at least to the early work of Taylor and Gilbreth at the turn of the

century in their concern with early man-machine relations. Historically,

human engineering probably came of age during World War II and man's first

intimate interaction with complex equipment. It may be seen, therefore, to

be one of the oldest disciplines in system analysis.

Maintainability, on the other hand, represents a relatively new concern

of the system analyst. In many respects, its growth parallels the engineering

development of concepts related to equipment reliability and maintainability.

Since both terms are concerned generally with the human's performance with

complex equipment, there may be no need to distinguish them as separate

areas of concern even though they are usually concerned with the separate

areas of operation and maintenance. Since in current aerospace industry

practice, however, distinctions are drawn between the operation and mainte-

nance of a system, human engineering and maintainability are presented as

separate topics here.

This chapter includes discussion of four major topics; human engineering,

maintainability, human malfunctions, and human reliability. That these topics

are presented as distinct concept areas does not necessarily imply that in

system development they need be treated independently. In actual practice,

the individual scientists responsible for one area are frequently the most

competent to analyze and integrate the others.

Human Engineering

Human engineering is a term which has been employed by the aerospace

community for a number of years. In a broad sense its meaning is understood
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by virtually every practitioner within this community. However, to avoid

possible confusion the term is used here to mean "... the determination of

man's capabilities and limitations as they relate to the operation, maintenance,

and control of . . . systems, and the application of this knowledge to the plan-

ning, design, and testing of each system to ensure efficient, reliable, and safe

human performance. " (AFSCM 80-3, ref. 3, p. B-I-I). As such, human engi-

neering is only one part of the personnel subsystems study. The latter includes, be-

sides human engineering, lifesupport, personnel selection and training, training

equipment, job performance aids, and performance measurement and evalua-

tion. The purpose of applying human engineering principles to system develop-

ment is to enhance new systems by designing them to exploit optimum human

capabilities without risking degradation of system performance by imposing

limitations on the human operator or maintainer as a result of improper de-

sign of equipment. In general, within the context of development systems,

human engineering is the application of psychophysical research to the design

requirements and constraints of the system in question. The areas involved

are, as a rule:

1. Sensory and perceptual capabilities;

2. Motor skills;

3. Information handling and decision making;

4. Group communications;

5. Body dimensions, reach and workspace requirements;

6. Environmental performance capacity.

During the system analysis process, human engineering principles and

procedures are applied in order to determine man-equipment requirements

for system operation maintenance and control functions. These data are es-

sential for the appropriate allocation to the system function. Similarly, these

data are used to determine performance requirements of man and equipment

interfaces as well as equipment and personnel performance criteria. Human

engineering data serve as rationale for allocating system functions. In addi-

tion, human engineering data are used to identify specific pieces of equipment

to be used by the system determining the equipment-oriented tasks that should

be performed, the design of both major and minor system components, and in
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determining the performance measures to be applied throughout system design

and development in order to check on adequacy of function allocation equipment,

etc.

Human engineering data, as previously ...... -'-- ._ ...... 1. of_l_L_L_u_,ed, are _,,_ _ _,_ applied

research in various psychophysiological areas. These results are frequently

stated in terms of statistical analyses. Consequently, research results require

interpretation before they can be applied to the design of any particular system.

That is, knowing the mean height of astronauts would not permit one to design

hatch sizes because the hatch would be designed for the majority of (if not all)

astronauts who potentially may use that hatch, rather than the average astro-

naut. In many cases in aerospace system development, potential users of the

equipment make up a very small nonstandard sample of the general population.

Thus, it is sometimes misleading to use experimental data obtained from

sampling the general population. During the Mercury spaceflights it was not

necessary to have knowledge of population parameters with respect to .....czt _ L.L u-

naut height, weight, agility, visual acuity, etc. --the capsule is not designed

for use by the average population, but rather for use by a very select group of

individuals who themselves could be measured on these parameters. Thus,

equipment could be designed for the specific requirements of the user popula-

tion rather than statistical averages.

Similarly, it is obvious that the nature of transfer of experimental results

from earth environment to zero-gravity space environment is as yet largely

unknown. The result of these limitations to application of human engineering

data base has been to enhance and increase the role of the human engineer dur-

ing the development cycle of space systems to include the conduct of system-

specific human engineering data collection. Thus, for example, visual acuity

criteria applied to space programs is frequently determined by experimenta-

tion conducted during the course of the development cycle for that particular

s ys tern.

Report Series Relation

As used in these reports, the term human _ _- _ =eng.n_r.n b refers to a techniaue

for solving the problems associated with man-machine and man-man interfaces.
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Specifically, human engineering is a technique for ensuring that there is no

degradation in system reliability which can be attributed to failure of passage

of information, materials or energy across man-man and man-machine inter-

faces. Human engineering is employed to ensure reliability across both opera-

tor performance interfaces and maintenance technician performance interfaces.

At each individual interface, the process of human engineering may result in:

Io Requirements for training man so that passage across the interface

in question will be reliable or optimal; or

2. Design of equipment at the interface such that the signal presented to

man or by man will cross the interface with reliability and validity.

Workspace design is concerned with the consideration of two or more inter-

faces at once. Thus, in practice, workspace design is concerned with the de-

sign of all interfaces such that taken together there are no degrading interactions

among them. Activities focused upon the problem of assuring the reliable pas-

sage of information and material across man-machine interfaces are specifi-

cally called out in the development cycle model.

Maintainability

Maintainability is a term used more and more in personnel subsystem de-

velopment. It may be traced to the development work incorporating reliability

in estimation of system performance. Generally speaking, it refers to the de-

gree to which a system, subsystem, or component can be maintained by per-

sonnel assigned to that task. It has to do more with the repairability of system

components and the manner, techniques and philosophy behind such repairability

than it does reliability, i.e., the degree to which a component will continue to

function at some specified level of performance over a specified period of time.

For the personnel subsystem analyst, reliability focuses on two major concepts:

mean time to restore (MTTR) and mean time between failure (MTBF). Implied

by, or a part of, these concepts are the notions of probability of successful per-

formance and point availability. While these notions are necessary in the for-

mulation of appropriate design concepts and maintainability concepts, they are

not essential to the discussion of an analysis of maintainability, particularly
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within the context of personnel subsystems. It is of course true that the amount

of time required to repair or restore a portion of a system to operational capa-

bility, or the frequency with which that portion of the system requires such re-

pair, is of great interest and makes substantial impact on various aspects of

system manning concepts. However, the ramifications of reliability to the per-

sonnel subsystem may be disassociated from many of the key concepts involved

in maintainability. That is, it is possible and fruitful to distinguish the inter-

actions of maintainability and reliability to personnel subsystem development

from the major effects of--or primary concepts central to--each of these prin-

cipal terms.

Maintainability may be seen to include at least three major areas of con-

cern. The first is providing means for identifying personnel maintenance tasks.

That is, a functional model of a system may be overlaid with the development of

maintenance functions. As the system operational model can be made more and

more specific through functions analysis to include finally the requirements

necessary to make means decisions, so can the maintenance functions. Obvi-

ously such allocations cannot be made until the requirements, constraints, and

design philosophy toward maintainability have been clarified and analyzed as

part of the functions analysis process. All considerations of man's capabilities,

environmental constraints, human engineering standards and procedures must

be incorporated into the allocation process. The process for deriving hw-r.an

maintenance tasks is essentially the same for operator tasks.

While man, as an operating component of a system, may perform in many

capacities varied in both kind and nature, it is possible to reduce the types of

tasks performed by a human in order to maintain a system to several specific

categories. A number of different terms have been applied to express the cate-

gories of maintenance tasks. In general they are as follows:

1. Detect need--Determine the need for, or evidence of, a malfunction

within a component subsystem or system.

2. Troubleshoot--Determine the specific malfunction eliciting the degrada-

tion of performance observed in (1) above.
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. Reinstate system performance--Alleviate the malfunction or

performance degrading character of the equipment and reinstate

to previous system acceptable levels.

Q Checkout--Subsequent to performing remedial action, determine

whether the action taken was successful and did in fact reinstate

adequate system performance.

The application of these categories to unscheduled maintenance events is ob-

vious. However they may be equally applicable to scheduled maintenance. In

this latter case, detection of a maintenance event is performed by predeter-

mined schedules of maintenance activities. Troubleshooting is a function of

the description of the scheduled event to take place, and identification of the

part component subsystem, etc. to which such scheduled maintenance fs to be

directed. Reinstatement of system function and checkout are directly appli-

cable to both scheduled and unscheduled maintenance events.

The second aspect of maintainability warranting discussion is that of de-

sign for maintainability. This refers to the application of maintenance design

concepts to the man-machine interface in order to facilitate the maintainability

by the human on the equipment in question. Examples of design for maintain-

ability may be found in the provision and design of access doors and hatches

to engines or otherwise inaccessible components, provision of special tools to

reach inaccessible parts, determination of which equipment will receive the

greatest amount of maintenance, scheduled or unscheduled, and location of

these for rapid and easy access of the human maintainer, etc. If a component,

part, or subsystem is to be maintained primarily through scheduled mainte-

nance, then the dictates of this concept are that it be positioned in such a way

that the scheduled maintenance events can take place quickly and with a min-

imum of equipm'ent downtime. In many instances, application of this concept

can require major redesign of specific components parts, such as lubrication

stations. Standardization of maintenance required tools also reflects design

for maintainability. Criteria frequently applied to the design of man-machine

interfaces for maintainability include the following:
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.

2.

3.

4.

Ready accessibility.

Ease of part maintenance.

Safety to both the equipment and the maintainer.

Number and weight of required tools.

5. Clarity of work required.

The above list is neither complete nor exhaustive, but rather representative

of the kinds of criteria applied to design for maintainability. Concern for the

application of these criteria to maintainability design is frequently not a clear-

cut proposition--in many cases, during the actual design of equipment, many

or several of the appropriate criteria are, at least on the surface, incompatible.

This requires criteria weighting and trade-off studies in order to assess the

best or most useful design concepts to be employed. When possible, these

trade-off studies are made within the context of system-effectiveness and/or

cost-effectiveness models. Obviously, in the design of equipment for maintain-

ability, consideration must also be given to subsystem reliabilities and criti-

cality (as defined by system-effectiveness models}.

A third aspect of maintainability is the reduction of operator-caused mal-

functions. In the previous two areas discussion has focused on identification

of the tasks required to perform maintenance and the nature of the maintenance

man-machine interface. In this case, however, the concern is with the opera-

tor, not the maintainer. There are many cases of equipment malhmetions

traceable to improper performance on the part of the equipment operator. It

is a function of analysis of maintainability within the personnel subsystem anal-

ysis to determine the means of maintaining operator skills and performance,

and his performance with respect to the man-machine relationship at levels re-

quired by the system.

There are several areas of system development in which operator malfunc-

tions may be reduced. One such area is in the original man-machine allocation.

Full consideration must be given with respect to man's capabilities in general

and specific kinds of people likely to perform the man-machine tasks, to ensure

appropriate allocation of jobs and tasks to the human operator. A second area

is that of equipment design. The design of the equipment to be used by the hu-

man operator must facilitate the operator's performance as weii as maintain
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his level of performance to those standards required by.the system. Poor

equipment design may ultimately result in a human-induced malfunction as a

result of fatigue, or other operator errors, caused by the location of switches,

dials, etc. in inappropriate positions. The nature, design, and content of job

aids identified with each man-machine allocation, and subsequent task identifi-

cation, may make a critical contribution to the frequency and magnitude of op-

erator-caused malfunctions.

Another area that may be mentioned here concerns the general concept of

manning. Determination of how many operators, at what level of skill and

knowledge these operators should be, and what the relief schedules for these

operators should be, can be used to reduce operator-caused malfunctions. The

operator's performance on a given task is determined by his skill level, train-

ing, motivation, the design of equipment with which he is dealing, and the gen-

eral ambient environment. It is also in part determined by the whole panoply

of psychological factors making up his personality. The interaction of these

factors and the manner in which they contribute to operator reliability is, of

course, quite complex and to a large degree unknown and certainly unquantified

at this time. There are, however, several human error models that attempt

to derive human reliability figures either based on certain assumptions made

about a set of factors contributing to human malfunction, or which incorporate,

in the model, various causal agents as variables. It is beyond the scope of

this report to critically review the human error models thus far produced by

the aerospace industry. To a large degree, these models, while having a

great deal in common, are idiosyncratic to specific applications. Generally,

these models may be distinguished into two groups. One group incorporates

effects of fatigue and/or stress as contributing agents to the degradation of

human performance; the second group assumes a random distribution of human

error and treats the probability of error attributable to the human operator as

a stochastic function. Thus far in the published literature there is little sup-

port for the validity of any current models as general models of human error.

The final area of concern to the development of maintainability concepts

is that of the nature of maintenance to be applied. One may distinguish between

scheduled and unscheduled maintenance events. Essentially this is the distinc-

tion between whether a system should be maintained by preventive maintenance
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activities or should be permitted to break down before maintenance-is applied.

In the course of normal system design, this distinction is not applied as a

dichotomous concept. Rather, there are certain aspects of the system and

system equipment to which one maintenance concept would be applied, and

other types of equipment to which the other concept may be applied. Deter-

mining the application for either concept is contingent on system effectiveness

and cost effectiveness for each as well as the intrinsic reliability of the sys-

tem in question. Since consideration of equipment reliability has a major im-

pact on the choice of maintainability concepts, it should be obvious that these

concepts present not a dichotomy, but rather a trichotomous situation. That is,

an alternative to either maintenance concept would be to design the equipment

such that its reliability was so high as to require no maintenance of any kind,

or to provide a duplex system such that when one component fails, the system

is maintained by a second identical component with no loss in system perfor-

mance.

Independent of whether the maintenance concept is for scheduled or un-

scheduled maintenance, the nature of maintenance provided also represents

a choice point for the system designer. This is particularly true for the main-

tenance function of restoration. Restoration may be viewed as a continuum

with complete part replacement on one end of the continuum and on-the-spot

repair at the other po±_. _ *..... _o= p_1_ are m_in_enanee options such

as partial replacement, repair in maintenance shop rather than on-the-spot,

and substitution of minor equipment parts. The embodiment of the replace

concept may be found in the growing trend in aerospace systems to utilizecom-

pletely modular equipment. In its most simplified form such a concept may be

seen in the design of the latest generation of solid-state computers. Ifa com-

ponent within a module fails, a warning light goes on indicating which module

is malfunctioning. The maintenance activity to restore system performance

is to pull out the malfunctioning module and replace it by an off-the-shelf op-

erating module. While such a concept has obvious advantages for the main-

tainer of the system in reducing the potential maintainer-induced malfunctions

(resulting from improper restoration of the malfunctioning part), it:does, how-

ever, have some obvious disadvantages. Among these disadvantages might be
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mentioned the almost overwhelming weight and cost penalties paid to provide

storage for substantial numbers of spare parts for space systems.

The above concepts are of key concern in the development of aerospace

systems. Hence they have been discussed at length in other repoi_ts in this

series. In the course of their discussion critical concepts as well as exem-

plary techniques have been provided. To avoid redundancy, techniques are

not discussed here.

Report Series Relation

Design for and implementation of maintainability is costly of resources.

When the maintainability of the system being developed is set up as a separate

criterion, it competes with other "goodness" criteria for the resources avail-

able to carry out system development. It can be seen then that unless there

is an overall measure of system goodness which includes maintainability con-

siderations, itwill be difficultto determine where the greatest payoff lies in

allocating development resources.

In this series of reports, it has not been necessary te employ the concept

of maintainability as a system criterion. Provision for maintainability falls

out quite naturally in the system development model as an action neces-

sary to achieve the required reliability of additive loops involving maintenance

technician performance. The model specifies that additive loops are designed

into an operational system for a single purpose--to meet overall system prob-

ability of success goals. This being the case, there is a target increment of

probability to be added in by each additive loop. It is then appropriate to use

any and all techniques which might be available to the designer in order to de-

sign each additive loop so that it will achieve its target increment.

Human Malfunctions

According to some studies, sixty percent of system failures may be at-

tributed to specific human errors of commission or omission. The factors

underlying human malfunctions may be broadly distinguished in two principal
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categories. The first are the so-called psychological factors of fatigue,
motivation, inattention, and stress. While a great deal of study has gone into
these particular factors, there is so far a paucity of data that may be applied
directly in the allocation and design of the personnel subsystem.

The second area of human malfunction factors includes the nature of equip-

ment, the nature of man-machine allocations, training, performance aids, and

task loading. Malfunctions attributable to the action of these factors may be

seen to reflect an inadequacy or insufficiency of analysis during design alloca-

tion and requirements identification of the personnel subsystem. Careful

allocation offunctions to the human operator, conscientious design of man-ma-

chine interfaces, and properly developed training programs, technical orders,

and job performance aids during the early development of the system can sub-

stantially reduce,or entirely obviate, most of the malfunctions associated with

the human.

Report Series Relation

It must be recognized that an out-of-tolerance output of a human-imple-

mented function will affect overall system performance to the extent dictated

by the relationship of the function to the system as a whole. The overall ef-

fect will not reflect whether the failure was a human failure or a hardware

failure. In short, human failures can and do have the same effect upon over-

all system output as do hardware failures. In view of this fact, provision

must be made in a system development cycle to ensure not only that the per-

sonnel in the system are endowed with the capability to respond as required,

but also that they will implement each assigned function with the required re-

liability.

The system development cycle model includes two principal classes of

activities focused upon assuring that the anticipated reliability of human per-

formance will be realized in the operational situation. Thus, there is pro-

vision for activities to develop a "maintenance subsystem" that will provide

additive support to operator and maintenance technician performance. There

is also provision for development of the Human Support Systems and the Safety

Support Systems. The purpose of these systems is to sustain environmental
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conditions so that the reliability with which man performs each of his assigned

functions will not be degraded.

Human Reliability

For all practical purposes, human reliability and human malfunctions

(previously discussed) are two sides of the same coin. A major portion of the

human malfunction discussion may be appropriately cited in this section. Very

little information is available on the reliability of the human performing basic

tasks. As the systems within which the human operates become more and more

sophisticated, and the equipment with which he interfaces also becomes more

sophisticated and idiosyncratic to the system, there is an increasing need for

determining basic component human behavior reliabilities. These data are not

currently available in the literature.

There are, generally, three methods of obtaining human reliability data.

The first requires the reduction of human behavior to a standard set of activ-

ities analogous in intent to the industrial engineering concept of basic time-

motion data. While such basic data stores have been initiated, as yet they are

not at a stage of development to permit wide application to the design and alloca-

tion of current personnel subsystems. The second technique that may be em-

ployed is that of collecting human reliability data from current operational

systems and employing them when the acts are approximately analogous to the

tasks and procedures specified in a developing system. The degree to which

the kinds of people in the new system are not similar to those utilized in the

operational system, and the uniqueness of activities involved is the degree to

which such data would be nonapplicable or misleading. A third technique that

may be employed to obtain human reliability data is to study human perfor-

mance in a simulation of the system in question. The nature and ambient en-

vironment of the simulation contribute markedly to the significance of reliability

of data obtained in this fashion. One further disadvantage is that appropriate

system simulators cannot be developed until the system itself has been designed

to a fairly specific level. Thus, indications of low human reliability with re-

spect to a particular set or sets of man-machine interactions may reveal limi-

tations in the system design too late for these limitations to be ameliorated by

redesign of the system.
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Report Series Relation

The straightforward implication of the term human reliability is that there

is a single number which can be used to describe the reliability with which a

given man will perform. The immediate question to be asked is--"perform

what?" The answer usually reveals that man will be called upon to perform

many things, and that it is not necessary or possible to expect him to perform

each of the functions assigned to him with the same reliability. It is therefore

clear that it may be confusing to talk about human reliabi!ity; it may be much

more useful to talk about the reliability with which man performs each separ-

ate function that is assigned to him. In this series of reports reference is made

only to the reliability with which a specific function is carried out. The term

human reliability is not employed because of its misleading implications.
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X. PERSONNEL SELECTION AND TRAINING

After the system has been analyzed in _- _"ui ficient'-:-- ue_a±-_-_:1 _Loprovide _u_ll"n__.-_..+_,__ _,.._'_"

of the tasks and task-associated equipment for both operational and maintenance

activities, determination is usually made of the kinds of people to be selected

and the training that must be provided for them. Generally this is done by iden-

tifying the skills and knowledge required by the tasks and overlaying them with

the descriptions of the personnel popuIation from which system personnel may

be drawn. The adequacy of such a meth_od is obviously contingent on the degree

of comprehensiveness and specificity provided in the identification of required

skills and knowledge. When individuals can be found with requisite skills and

knowledge for the system, selection of personnel is said to have been completed.

When the system being developed presents unique requirements in terms of

skill and knowledge, only prerequisite background can be selected for in the

choice of individuals to man the system. The difference between the level of

training, knowledge and skills of the selected individual and the needs of the

system are those areas in which training must be performed.

It may be seen that there are two critical choice points in the provision of

adequate manning to the system. The first is in the initial characterization of

skill and knowledge requirements for the system. Hand in hand with this spec-

ification must be complete documentation of skiils and knowledge presented bythe

potential personnel population. That is, the skills and knowledge identified dur-

ing the system development must be comparable, in terms of parameters and

parameter measures, with available descriptive measures on the potential

user population. When the two are compatible; the process of selecting from

the population is to a large degree mechanical. The second critical area is

that of providing the necessary training and training equipment for the selected

individuals in order to bring them up to the level of proficiency and understand-

ing necessary for required tasks.

Three major topics are discussed in this chapter: training concepts and

plans, training equipment planning information, and skills. Knowledge--as a

term applicable to this chapter's topics--was excluded from specification and

discussion primarily because its meaning in aerospace industry usage is not
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at all private or idiosyncratic.

public meaning of the term.

Its use in this context is by and large the

Training Concepts and Plans

Historically, man devised mechanisms and then learned to use the mech-

anisms after they had been constructed. At best, training was a trial-and-

error process. This training concept is no longer appropriate to the more

complex systems of today. The nature of training individuals on the use of the

mechanisms, and the development of skills and knowledge to support operation

and maintenance of the system, must now be considered during the early devel-

opment stage. Development of the concepts for training, as a rule, go hand-

in-hand with the determination of tasks and task requirements for all aspects

of the system. The coordination of training concept development and human

performance identification may be seen in the sequences of analyses required

to determine training plans. A representative sequence is as follows:

i. Determine what the human will be required to do as a component

of the system--that is, what will the tasks and procedures be for

both operation and maintenance activities.

2. Identify skills and knowledge required to perform these tasks.

. Determine the job classification--that is, the kind of individual

to perform each position within the system.

. On the basis of descriptions of capabilities associated with each

job category thus identified, and the skills and knowledge require-

ments of the tasks associated with that category, determine the

additional skill and knowledge requirements for the job.

. Based on the additional skills and knowledge required, deter-

mine the techniques, tools and programs necessary to provide

the system with trained personnel.

Skills and knowledge required by the system for each individual are

identified by requirements allocation and subsequent task analysis. Training
J
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objectives which include specific skills, knowledge, or attitudes, is synthesized

not onlyfrom the requirements allocation and task analysis but also from QQPRI.

These objectives frequently include such categories as:

i. Identifying,

2. Knowing principles and relationships,

3. Following procedures,

4. Making decisions or choosing courses of action,

5. Performing skilled perceptual motor acts, and

6. Maintaining desirable motives and attitudes.

Two major products result from analysis of training requirements. The

first is a detailed plan for the kinds of training to be provided each individual

and group of individuals within this system. This plan is concerned with al-

locating training responsibilities among categories of training such as whole

vs. part-task training, system training, -....._.....i ,___-_ _.^*_ u_._
_.)I'U_UU.I. _J. L.I. GLIJ. X*LII_, I_CLV.I.JL&_

made the decisions necessary to allocate particular training requirements to

various kinds of training, the second product is the requirement statements

and ultimate design of specific training equipment to be used. This training

equipment may take several forms--among them (in terms generally used in

industry) are:

i. Trainers--a device or equipment which is used as a primary means

of teaching personnel to perform a particular task or a series of re-

lated tasks.

. Training accesories--visual, graphic or other instructional supple-

ments which have no training capabilities per se but may be used in

a training course in conjunction with specific training aids.

. Training parts--items of system operational equipment which are

used or included in training.

Trainers have received the greatest emphasis in industry primarily be-

cause they are costly items. Included in the term trainers are simulators,

training devices, training aids and training attachments. Simulators refer

to the group of equipment, either simple or relatively complex, which uses
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mechanical/electrical means to simulate the critical aspects of a particular

job, position, or task sequence. The Link trainer used in World War H and

more complex flight simuIators of today are examples of this type of training

equipment. Design of adequate simulation equipment requires a great deal of

sophistication about the operational system for which it is to provide simula-

tion. Frequently this type of training equipment can be as complex as the

system it is simulating, and can be a very expensive item. In addition, it

requires that substantial anaiytic effort be appIied to the original system to

determine the most valuable aspects of this system to simulate. Inadequate

simuIation or 0versimulation results not only in low cost-effectiveness indices,

but also lower utility of training time. Training devices are items of equip-

ment to be operated by the students which perform one or more very specific

operating functions. Typically they.do not provide for practice in all aspects

of a mission, but are equipment for practicing procedures. As a ruie, train-

ing aids are instructor-operated devices which faciIitate training by auditory,

visual, or kinesthetic means. These demonstrate the functionaI characteristic

of operational end items without using the operational equipment. Examples of

training aids are animated panels, static and animated overlays, pictorial

cutaways, training charts, training films, etc. Training attachments are

sinai1 pieces of equipment used in conjunction with other training equipment

in order to perform a training function. Various visual or auditory attach-

ments to a simulator are exampIes of this type of training equipment.

Development of training plans are part of the overall system development

documentation and have, as their data source, documents provided by the sys-

tem engineering program already mentioned. Specification of training equip-

ment results from analysis of the training equipment planning information

(TEH). This analysis, while properly a part of the concepts of training,

warrants a separate discussion and is presented elsewhere in this chapter.

Report Series Relation

The model presented in this series of reports calls for formulation of

training concepts and plans (in a representative way) early in system design

in order to demonstrate that it will be possible to carry out the training
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implied by a candidate system solution. In fact to provide the confidence

necessary to proceed with_ a given course of system development, it may be

necessary to create increasingly detailed training concepts and plans without

any firm implication that the concepts and plans set forth will constrain the

development of the ultimate training program. Not until Function G of the

model, is it necessary to formulate firm training concepts and plans in con-

junction with determining needs for training materials, trainee selection in-

struments, job aids, instructor selection and training-plant selection, and for

training-program development.

Training Equipment Planning Information (TEPI)

During completion of system development analysis, recommendations

are made for equipment to be used for training operators and maintenance per-

sonnel in the use of the system. The TEPI provides ........ _o+_,_ e_ _b

functional allocation of particular equipment to be used in that training. The

training equipment ranges from specific, small training aids to complex,

whole mission simulations. The basis for performing analysis, or summary,

of training equipment planning information, are the operating and maintenance

concepts for the system, QQPRI, task descriptions, performance criteria and

other human engineering data, training concepts or preliminary training plans,

state of the art, and preliminary training parts list.

An essential precursor to the development of training equipment planning

information is complete investigation of the system to obtain personnel alloca-

tions and clarification of skills and knowledge required by the developing sys-

tem. In many cases training equipment identified in TEPI reports may be

found as on-the-shelf items. However, as the system under development re-

quires more and more complex interaction among the personnel manning the

system, the nature and complexity of training equipment also changes. In

some cases, particularly when a great deal of personnel interaction is re-

quired to optimize the performance of the system, system training is necessary.

In this case, training equipment recommended in the TEPI report may be quite

elaborate.
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Report Series Relation

If this approach to the development of requirements for training equipment

is employed in the course of a development cycle constructed according to the

model presented in these reports, TEPI would be employed in Function G. In

G it would be important in making the trade-offs among what will be trained,

what will be job-aided, and what performances will be selected. As a result

of these trade-offs, the training equipment will be called out in terms of the

performances to be fostered bymeans of the equipment; no detailed means

would be specified.

Skill

Skill, or skill level, refers to the proficiency level of an individual in an

assigned training program or career field. In the Air Force and Navy systems,

skill levels refer to orderings of individuals by numerical code in career field

proficiency level. Usually given in descriptions of a particular skill or skill

level is the rank of the person, the number of years in service (as a range), the

training schools the individual should have attended, and the proficiency levels

within each of the training schools. Also associated with skill level, are the

equipment and systems within which the individual has received training.

This information is used in system development to identify appropriate

individuals for manning of the system both in terms of maintenance and oper-

ation. As such, it is frequently included in maintenance analysis and training

equipment planning information.

Job skills, a related term, refers to the abilities required of personnel in

performing various tasks which make up a particular job. These skills include

perceptual decision making and manipulative abilities.

Report Series Relation

In this series of reports, measures of goodness of subsystems, component

functions, system parts, or any other partition of the system are restricted to
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those which can be derived from the Quality score which is used to measure
total system "goodness. " It has not been necessary nor desirable to employ
the concept of skill, nor to construct a way of measuring skill in order to mea-

i,_ . may spe__kinsure the goodness of any personnel products. Thus, a_L_1oughwe

general of measuring skill, any measure of skill which is commonly used ap-
pears to be unrelatable in a systematic and useful way to overall system
quality.
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PRECEDING PAGE BLANK NOT FILMED.

XI. PERSONNEL SUBSYSTEM TEST AND EVALUATION

A key concept in the development of a system is that all major subsystems,

components within subsystems, and, in fact, the system as a whole, can be and

should be exercised for .... purposes as many times in *"^evazuatzon Li1_coursc of de-

velopment as possible. Such test and evaluation provides constant information

about the adequacy of the development cycle as it is proceeding. Itcan also

provide valuable insight into the performance qualities lost or gained by var-

ious allocations and trade-offs made in the course of development, as well as

providing information in those areas requiring additional development for reach-

ing greatest utilityand optimization of men and equipment. As a specific

called-for product of the system development, periodic test and evaluation of

the personnel system is usually demanded by the sponsor.

Formalized test and evaluation procedures can be usefully implemented

at virtually any stage in the development cycle of the system. However, until

such time as substantial portions of the system are present in operational form,

evaluation can take place only of simulations, mock-ups, or documentation of

the system. Consequently, the most comprehensive evaluation and tests of the

system and system components are frequently directed to occur during the final

stages of the development and acquisition stages of the system.

The topics covered in this cuapt_v.............uu._'_*_principally of a _.._.__......._ _f

personnel subsystem test and evaluation program and a discussion of system-

effectiveness models. The latter topic is included because it provides, on an

ongoing basis, a major tool that may be used for constant evaluation of the ad-

equacy of requirement development in the course of system analysis.

Personnel Subsystem Test and Evaluation (PSTE)

System development, as it is commonly practiced today, requires the com-

plex interaction of a number of concurrent activities. One of the major classes

of activities is personnel subsystem development. To ensure appropriate de-

velopment and facilitate the many decision points in the development cycle, all

component aspects of the system are frequently tested, evaluated, or other-

wise exercised during the course of development. This is particularly true
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with the personnel subsystem. This test and evaluation takes place during,
and immediately subsequent to, the development cycle of a system.

Generally, three time-oriented evaluations take place. The first, con-

cerned only with specific identified subsystems of the system, takes place dur-

ing the early portion of the development cycle as each component and subsystem

is developed. The concern, or focus, of this type of test and evaluation in-

clude s:

I.

.

Evaluation of, and refinement of, initial requirements for personnel

and training, training equipment and instructors.

Evaluation of the human engineering applications to subsystem and

component design.

.

4.

Identification of preliminary skill requirements.

Evaluation of training equipment developed to that time to determine

whether the equipment meets the requirements of performance as

called out by system engineering documentation.

After the system has been developed to a point where major subsystems

can be integrated and exercised as a system, a second test and evaluation pro-

cedure is initiated. The goals of this testing are to:

1. Determine whether the products comply with specifications;

2. Evaluate new design changes before they become incorporated into

the production model;

3. Determine the system's capabilities and limitations under actual or

simulated conditions;

4. Provide limited training on the developing system;

5. Determine whether the system will in fact meet the requirements of

the follow-on system as well as prove adequate for adjacent systems;

and
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6• Determine the adequacy with which the system can be maintained with

minimum outlay of resources in terms of personnel, logistics, and

back-up equipment.

The final test and evaluation occurs subsequent to the actual development

of the system but prior to the system's inauguration as an operating system•

This test is predominantly one of user acceptance and user evaluation, and is,

as a rule, conducted solely by the customer agency• In this test, all aspects

of the operational system are exercised _in an ongoing operational fashion. Ob-

jectives of this particular test are.-

i. To determine the utility of the system and development of the most

effective procedures, techniques and job standards.

.

•

e

To identify anydeficiencies in the process or procedures of the

System.

To assess the adequacy of training procedures as they are specified

during the development cycle, and as they are implemented during

and subsequent to the development of the system.

To initiate the System into its ongoing capacity as an operational

unJ. L•

While specific points along the development of the system can be identified

and associated with implementation of personnel subsystem testing, the person-

nel subsystem can be tested and evaluated at virtually any stage of the develop-

ment cycle. Depending on that point in the cycle when the testing is performed,

specific goals could be outlined. However, one may identify several general

purposes of personnel subsystem test and evaluation that are applicable at any

time. One such purpose is that test and evaluation helps ensure that the sys-

tem can be operated, maintained, and controlled by the personnel who will man

it. This has obvious ramifications to the development of not only functions al-

l.cation and task development, but also training requirements identification,

training equipment and training planning. A second major purpose of PSTE

is to identify those areas in the personnel subsystem in which problems may

arise and to identify those tasks and procedures in which deficiencies in
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performance will result in degradation of system effectiveness. A finalpurpose

of the PSTE that may be mentioned here is to establish and evaluate methods,

techniques, tools and requirements for the research, development, and test of

personnel subsystems.

Report Series Relation

In this series of reports, the purposes of the Personnel Subsystem Test

and Evaluation program are achieved by a sequence of four function types iden-

tified in the development cycle model. The first of these (H-13 and H-14) are

implemented after completion of the training program and are designed to dem-

onstrate the performance capability of the selected, trained, job-aided person-

nel who are to perform in the operational system. After deficiencies detected

by this test have been corrected, the crew is tested in conjunction with the

Human Support System (H-15 and H-16). If appropriate, the crew is also tested

when it is integrated into the complete local (remote) segment for a test of the

segment as a whole (H-17 and H-18). If previous tests have been passed, pre-

sumably failures in this test may be attributed to integration problems. The

final test in this sequence is a test in which the personnel products are inte-

grated into the total installed system for a test to demonstrate total system

capability (H-20). In the model all of these test functions are undertaken in

Phase III, the fabrication phase. Taken together they are essentially equiva-

lent to PSTE in that they serve the same overall purpose.

System Effectiveness

The output state of a given system is usually a set of qualities, each of

which can be related to the objectives of the system. System effectiveness is

a measure of how well these objectives are met and the extent to which ele-

ments within the system contribute to the effectiveness. These elements are

generally termed accountable factors. In certain cases, a meaningful defini-

tion of system effectiveness cannot be accomplished unless the supersystem is

considered.
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According to the system-effectiveness concept, the relative value of an

element within the system is determined by the extent to which it contributes
to overall system performance. This permits trade studies by comparing the
relative contributions to system performance with relative costs involved. It

also requires every element in the system to be expressed in terms meaning-
ful to the overall system performance.

As with many terms discussed in this report, system effectiveness can be
given a general definition. However, more precise definition of the term
--for it to be used in the context of a particular development system--requires

a specification of particular parameters that are measured and included by
system-effectiveness models. Thus, the operational definition of the term is
found only in particular applications to given systems. One attempt to formal-
ize the procedure of deriving precise parameters for measurement from the

more general definition of the term given above was made by the Weapons Sys-
tem Effectiveness Industrial Advisory Comraittee. For that committee, sys-
tem effectiveness is defined as the vector of specified figures of merit, where
figures of merit are indices which indicate the quality of the system. System
quality can be, in this context, a measured physical quality such as payload

weight, range or altitude of a vehicle. It may also be a calculated qualitybased
on statistical measures such as mean time to repair, or mean time between
failures. Finally, it may be a predicted quality based on measurement and/or
simulation. Point availability would be an example of this last predicted
quality.

System effectiveness is not an entity in and of itself, but rather an index

score representing the relation of a number of variables. The means for ex-

pressing this relationship frequently takes the form of a mathematical model.

Components of this model are the following:

lo Mission profile--a time line analysis of the sequence of events for a

given mission.

. Mission outcomes--principal events that result from a mission.

These outcomes can be distinguished on the continuum of success,

partial success, or failure to fulfill the mission, in some respects
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these outcomes are parallel to specification of system requirements.

Mission outcome statements are made concerning the events result-

ing from a mission, whereas system requirements statements are

made about the need for particular system output states.

3. Functions definition--an identification of and statement about each

major function that contributes to achieving the system output.

a Accountable factors identification--those specific factors known to

determine figures of merit. This requires exploitation of all assump-

tions made in regard to factors influencing figures of merit. Cate-

gories within which accountable factors may be identified are, system

hardware descriptions, survivability, vulnerability, personnel, sup-

port equipment, and system interfaces.

System effectiveness is then estimated from a model combining the infor-

mation developed in the above areas. The model serves as a probabilistic

representation of events which may occur during a system mission. It relates

the possible events to levels of performance adequacy which may be expected

for the mission.

Construction of the model is generally described in four steps:

i. State description;

2. Determination of availability vector;

3. Determination of dependability matrix; and

4. Determination of capability matrix.

Description of the significantly different system states in which the mis-

sion may be carried out is the first step. States are distinguishable conditions

of the system produced by functions, processes, or events occurring before

and during the mission. The system makes transitions from state to st'ate dur-

ing a mission. As a result of timeline analysis, the mission is split into a

number of discrete time intervals during which different functions are being

performed. During each discrete time interval a set of significant states, ap-

propriate to the function being performed during that interval, may be identified.
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Relating accountable factors to the probabilities of each set of significant

states is the next step. The array of probabilities is called the availability

vector. The relationship between the array of state probabilities and accounta-

bility factors is identified for each succeeding time interval. These probabili-

ties are dependent on, or conditional to, an effective state during previous time

intervals. The array of conditional probabilities are called the dependability

matrices.

Given the system conditions during the mission, the final step is the con-

struction of an array of measures of the ability of the system to achieve mis-

sion objectives. This is the capability matrix. This matrix specifically

accounts for the performance spectrum of the system. Each element of the

matrix is an expected figure of merit conditional on performing the system

mission in a given effective state.

The nature of information serving as inputs to the model, and the decisions

to be made on the basis of model outputs determine, in large part, the struc-

ture of the model. The models may also be subdivided by level of system eval-

uation desired, such as system, subsystems, equipment, or smaller components.

Level of evaluation is contingent on the objective of the particular evaluation

and available information.

Because of the nature of quantification required by model construction, it

is easier to include parameters of effectiveness relatable to equipment com-

ponents rather than personnel components of the system. Within the context

of development systems whose goals are primarily scientific rather than mil-

itary, the personnel subsystem components included in the model are usually

those of crew safety and adequacy of data return. All aspects of operational

and maintenance activities performed by personnel associated with the system

are related to those two factors. The choice of these factors is not necessarily

a poor one. In systems designed to acquire scientific data, the contribution of

the crew to assist in obtaining this state is of critical value to the overall ef-

fectiveness of the system. In the case of manned spaceflight--given the political

and psychological attitude of the public--crew safety is an equally important

factor.
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Clearly, it would be possible to subdivide each of these factors into a

number of component parameters. However, since such subdivision is
difficult and time-consuming, and since in most development systems the

two personnel subsystem factors are given equal weights in terms of contri-
bution to the overall system-effectiveness model, further division of these

factors is rarely performed in a systematic fashion. Since the greatest util-
ity in systems analysis is achieved by constant relation of functional break-
downs to more and more specific indicies of system effectiveness, this failure
to provide specific system-effectiveness parameters for personnel subsys-

tem factors is an inadequacy in current methodology.

Report Series Relation

The term system effectiveness is not used in these reports. However,

many of the concepts implied by the term are found in the meaning of the

Need Satisfaction and Quality scores. These scores are completely dis-

cussed in Report I of this series. For the reader's convenience, a brief

review of the scores is presented here.

Need Satisfaction Formula Score. --Development of a system is initiated

by the customer's needs. Expression of that need may be traced to some

dissatisfaction about the customer's system. (N.b. The customer's system

referred to here is the follow-on or supersystem which the development sys-

tem is proposed to serve. ) When the customer's problem has been identi-

fied, it may be related to a set of measures that will later permit quantification

of how well, or to what degree, the problem has been alleviated. The formu-

la expressing these measures is the Need Satisfaction Formula. Put another

way, a Need Satisfaction score formula tells how any proposed way of solving

the problem will be evaluated. For example, any proposed solution which

completely fails to reduce the problem might be assigned a Need Satisfaction

score of zero; any proposed solution which completely solves the problem

might be assigned a Need Satisfaction score of one. The formula for mea-

suring need satisfaction (problem reduction) would assign numbers between

zero and one to reflect the "goodness" of less than perfect solutions.
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A Need Satisfaction score formula is, of course, a specially devised act
of measurement. By obtaining the customer's concurrence in its formulation,

a public method for measuring the goodness of alternative ways of solving his
system problem is established. Because the formula is one for measuring ef-
fects in his system, the formula is completely unbiased with respect to solu-
tion methods and may be employed to evaluate any candidate.

It is also useful to talk about a target Need Satisfaction score. The impli-

cation of a target score is that any candidate solution for the problem which

yields a lesser score will be completely unacceptable. Taken together, a

Need Satisfaction score formula and a target score provide a basis for a clear

understanding between a customer and someone who is attempting to solve his

problem with respect to the objective of the problem-solving effort. It is

worth restating that a Need Satisfaction score formula is never tailored to the

measurement of a particular method of solving the problem of the customer;

it is always unbiased so that it may be used to evaluate any proposed solution.

Quality Score. -In these reports, we are concerned with needs or problems

which require complex systems for their solution. This report is not specifi-

cally designed to be useful in those cases in which there is a simple solution

to the problem identified by a Need Satisfaction score formula.

We are concerned here with the case in which we must build a complex

system, A, in order to achieve a target Need Satisfaction score in its follow-

on system, B. In general, if system A must be complex and costly and can be

justified, then the problem in its follow-on system must be one of significant

importance to society.

Given a Need Satisfaction score formula and a target score for system B,

we have a criterion for the success of system A, but we do not have a demarca-

tion of its output boundary. A way to make such a demarcation must be pro-

vided.

One way to obtain an identification of the output of system A is to model

system B in such ways that one may explore the effects of various hypothesized

inputs to system B upon its Need Satisfaction score. The result of such an
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exploration can be the development of a formula for measuring a hypothetical

output of system A in such a way that the resulting Need Satisfaction score can

be predicted purely on the basis of output measurement (that is, measurement

of the hypothesized input to system B).

We will call a formula for measuring the output of system A in such a man-

ner that the resulting Need Satisfaction score can be predicted, a Quality score

formula. It will be useful to think of Quality scores which result from the ap-

plication of this act of measurement as falling in the interval zero to one, in

the same manner as Need Satisfaction scores. Thus, a Quality score of zero

will correspond to a Need Satisfaction score of zero and a Quality score of one

will correspond to a Need Satisfaction score of one. By means of the device

of the Quality score formula, we provide ourselves with a way of identifying

objectively the output that we need from system A without entangling ourselves

in the inner workings of system B, and without necessitating the use of the

Need Satisfaction score. Thus, there will be a target Quality score which cor-

responds to the target Need Satisfaction score and which may establish the lower

boundary of acceptable output of system A. We may then say that system A may

be implemented in any manner that will yield a Quality score greater than or

equal to the given target Quality score.

For complex systems, the makeup of a Quality score formula can itself

be very complex. Whatever its makeup, it is clear that it must be determined

by consideration of system B and no__.ttby consideration of system A means, for

system A will not exist at the time of Quality score formulation. Inasmuch as

a Quality score formula is constructed on the basis of an analysis of system B,

there is no single prescription for what it must include; it must be tailored to

the system B at hand. The best that can be said about the content of a Quality

score formula is that it will most likely include provision for the measurement

of a number of factors and provision for combining the obtained factor scores

into a single overall Quality score. Some of the factors which must be taken

into account will include: the output state, the time when the output must first

be made available, the life required of system A, the dependence of the output

of system A on signals from system B, the probability of output required, and

the conditions of use under which the output must be provided.
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In practice, it may be very difficultor even impossible to prepare a

Quality score formula of the type described here and to obtain customer agree-

ment upon it. Nevertheless, the eventual test of any implementation of system

A will require measurement according to a formula. It can be seen that what-

ever formula is used for measuring system A, it will be used in exactly the

same sense as the Quality score formula described here.
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PRECEDING PAGE BLANK NOT FILMEO.

XII. BASIC DESIGN DATA

This chapter is concerned with a discussion about basic design data. The

chapter has not been divided into topic headings for several reasons. The first

and foremost reason is that basic design data is, by its very nature, a singu-

lar topic. Further division of this topic could only be by type of data involved.

To do this would be to replicate much of the information appearing in earlier

chapters of this report. A second reason is that basic design data refers to

the large body of data supporting system development, and the requirements

for management, control and organization of the data--distinguishing subcate-

gories or topics of basic design data would in a sense be violating the integra-

ting function performed by the topic itself.

While the discussion below specifies the nature and definition of basic de-

sig_., data primarily with respect to the personnel subsystem, the term can be

broadly applied to the base data used throughout the system in its development.

As such, these data would include the following:

1. System requirements analysis data;

2. Specification criteria data;

3. Personnel requirements data;

4. Training and training equipment planning data;

5. Engineering drawings;

6. Procedural report data;

7. Ancillary data requirements (test program data, health and safety

data, calibration data, etc. ).

From this list itmay be seen that only some of the data included in a gen-

eral basie data program would be concerned with the personnel subsystem.

Those data that do fallwithin that class are discussed in the following section

as well as in earlier portions of this report.

Basic Data

The basic data program is the Personnel Subsystem design portion of PSD.

If the basic data program starts after personnel are assigned as means for
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individual functions, the program may be considered to be specific to the PSD

sequence. If the basic data program includes the initial breakdown of the ab-

stract system into its functional components, then parts of the basic data pro-

gram are considered to be a subsystems function which is not specific to PSD.

The term "basic data" is used since the performance requirements are

presented to other personnel in the development sequence (Training Depart-

ment, T.O. Department, etc. ) in the form of data. The data are considered

to be basic since the performance requirements are basic to all means of de-

veloping the necessary performance capability, such as equipment, training,

T.O. or job guides, i. e., all of the means for implementing a given function

must be oriented towards the same requirements. If physical means (as op-

posed to functional means} are not included (except for personnel means} the

output from the basic data program may be regarded as the means of communi-

cating performance requirements, functional means, and detailed description

of personnel performances.

Quite frequently, the "data" portion of the basic data program is empha-

sized and little attention is given to the analytical processes required to pro-

vide the data. In so doing, the emphasis is placed on a central source of data

gathered by one group of personnel to minimize the interaction of different

personnel with the design engineers. This is an excellent concept but does not

cover the problem of who should specify personnel performance requirements.

Concentration on the data portion of the program generally results in the equip-

ment designers specifying personnel performances, i.e., analysis of the sys-

tem is implemented by the engineers and the human factors specialists merely

document the results. Too frequently an engineer tends to consider personnel

not as an available means with a given capability, but rather as a necessary

evil. Thus the means selected are frequently not optimum when evaluated in

terms of the requirements for the function.

There are several types of data usually provided within the basic data

package. As a rule these data are of the following types:

i. System functional-flow diagrams--identifies and shows the sequence

of all system functions and activities programmed for the operational

system.
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o Operation/Maintenance activities analysis--translates system functions

in terms of equipment and personnel required in the performance of

each identified system activity. The data are given in tabular form,

listing derived equipment and personnel performance characteristics

by system function.

. Performance standards (proficiency) analysis--further reduction and

detailed specification at the input/output level of the performance (by

personnel) described in the analysis referred to above. Included in

this type of data are malfunction isolation/emergency procedures data

which detail the procedures employed by personnel upon indication of

malfunction or hazard condition.

To achieve optimum utilization of basic data, a basic data organization

model may be developed. This model organizes all data produced by or rele-

vant to the development of personnel subsystems for the particular system.

The principal objective of the basic data organizational model is to organize

system data so that individuals generating basic data materials know where to

store them (or how to designate them properly for storage), and the people need-

ing these materials know where to find them. It is organized so that all basic

data for a particular function activity are readily located in individual pockets.

Inherent in some data organization models is a designator-iocator system

designed primarily to facilitate storage and retrieval of basic data by provid-

ing a unique designation for sYstem data references at various levels of speci-

ficity. In general, this designator-locator system is a set of coded designators

for equipment and function partitions. The symbology adopted for coding these

two basic designator subsets (i. e., equipment designators and function desig-

nators), provides for the identification of system equipment down to the level

of modules (principal subassemblies of line replaceable units) and for identifi-

cation of system functions down to location and equipment-specific activities

and tasks. Through appropriate combinations of equipment and function desig-

nators, unique designators are available for each type of basic data. This sys-

tem is also used to identify tasks and task elements associated with an activity

through the use of a third subset of designators.
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Report Series Relation

If one considers the stabilized design decisions made in the course of

system development to be cumulated into a basic data pool, then there will

always be a source of firm data to be employed by all activities in a system

development cycle. The term basic data as employed by human factors and

biotechnological personnel typically refers to that portion of the basic data

pool which is specifically related to personnel products. This subset of data

is not specifically called out in the model developed in these reports.
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XIII. RESEARCH IMPLICATIONS

The manner in which the system analyst deals with the phenomena, events

and data in systems analysis is reflected to a large degree by the terms he

employs to label the events, data, and analysis he performs. It should be

evident to the reader that many of the terms employed in systems analysis

are employed without precise usage or definition. The proliferation of terms,

concepts and analytic techniques reflects the increased interest in and neces-

sity for personnel subsystem analysis. However, it would be erroneous to

assume that the terms, concepts and analyses have necessarily a one-to-one

relationship. A term may be employed by a particular user to mean a

relatively specific concept or analysis. As the term achieves wider use, the

meaning of the term becomes more and more vague until finally the term has

very little precise meaning to a majority of the system analysts. Consequent-

ly, a new term or a modified old one is substituted, again with an initially

precise definition, and, as it grows in more general use, it becomes a

vaguer and vaguer one.

The result is that in current use there is a variety of terms that have no

definite referent. Further, reflection on those terms presented in this report

illustrates that it is sometimes very difficult to distinguish between two terms

.._,_,v_.._ in _tact t_e.. same general..... reference. Too often the analyst is compelled

to devise an idiosyncratic term, primarily because he cannot understand nor

distinguish among the more popularly used terms. Too often, the analyst

reads through a description of a concept only to find that he is quite familiar

with the concepts being presented but is totally unfamiliar with the terms used

to describe or label the concept or set of concepts. Depending on his inven-

tiveness and tolerance, he may, in his use of the concepts, either use the

unfamiliar terminology and assume that it is general in the community, con-

tinue to use his own, perhaps older, terminology, or decide to invent a new

term or set of terms to unite both the old and the new and serving only to

create more reader confusion.

With respect to the terms presented in this report, both the author and

the readers are required to distinguish among a set of terms that have wide
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popular usage but not necessarily a precise public meaning. The aerospace
industry analyst has shown a great willingness to work within precisely defined
frameworks of system development. They have thus far, however, been
resistant to the kinds of structures so far proposed. This reflects, not a lack

of cooperation so much as it does an inability to operate consistently and
meaningfully within the frameworks thus far provided. It is suggested, on the
basis of this report in particular, that the reason for the analyst's inability to

operate successfully within system development frameworks usually imposed,
is that the terms and concepts with which he is compelled to operate are not
precisely defined nor presented in a way which would permit him ready access

to the meanings of the terms and concepts.

In order for system development of complex man-machine systems to
derive the greatest utility from the activities of systems analysis in general,
and human factors (or biotechnology) in particular, requires a systemization

and precision of definition so far not present. The needs of this community
may be seen to be made up of three major components.

i. A set of terms and concepts precisely defined so that they may be
uniquely and clearly distinguished each from the other. Where two 9r three
terms may be found in popular usage that refer to the same general area or
topic, a choice should be made of just one of them. This one should then be
defined to a degree that permits ready distinction of the referent of this term
with all other terms. By precisely defining terminology, it is possible to

develop internally consistent and logical concepts, and from these concepts,
tools and techniques to implement effective system development. When the

terminology itself is vague, or heavily overlapping in referent, then the
concepts derived from these terms usually are also vague.

2. Identify ways in which the terms and concepts can best be presented

didactically. Identification and definition of terms and concepts in a highly
precise, logical and internally consistent fashion is in and of itself insufficient
to obviate the confusion and ambiguity present in the nomenclature-related

problems of systems analysis. The scheme must, in its entirety, be made

public information to the aerospace community. In order to do that requires
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more than just publishing the terms and their definition. It is necessary that

these terms, concepts, and techniques be presented to the community in such

a way as to facilitate the community's understanding and comprehension. A

particular idea might be quite logically and precisely defined and explained,

but unless this explanation and definition is presented in such a way to make it

meaningful to the reader, the information remains private rather than public.

The need in system analysis of development systems is for a set of p__blic

terms and concepts. Studies should be undertaken to determine the potential

techniques for most effectively presenting the identified terms and concepts.

Potential techniques may be through strip film, through various audiovisual

techniques, through motion pictures, or through programmed instructional

manuals. While it is impossible at this time to determine which among those

techniques would be most effective in presentation of the information, it is

quite possible to say now that the standard technique of presenting these terms

in the form of a manual is not always .......... _ ...... 1o_ terms nre pre-

sented currently in a variety of manuals, none of which have proven to be very

effective in teaching the user the requisite information.

3. When a method or set of methods has been identified as the most

effective means for presenting the terms and concepts, this should be made

into a formal package and presented to all individuals, companies, and

agencies who would have need for these products.

Any attempt to provide such a package would not be easily accomplished--

the methodology is not simple nor is it self-evident. However, one can now

suggest the first steps to be taken.

1. Identify the community needs. --The biotechnology fields should be

investigated to determine the scope and nature of their needs for terminology,

concepts, and structure. Particular emphasis should be directed toward the

potential problems facing the development of an organized terminology. Two

such problems identifiable now are user acceptance and provision for the

dynamic nature of the terminology. The first mentioned problem, user accept-

ance, must be solved completely before any major resources are expended to

develop a terminology. The user--the system analyst--must accept the terms
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and their implicit structures for the structure to have any utility. It is essen-
tial to determine the parameters of this acceptability at the very beginning.

The second problem is also critical. Techniques must be developed to permit
the biotechnological disciplines to retain the dynamic growth of concepts with-
out reflecting this changeby the addition of new terms rather than by continu-

ous changes of terminology definitions.

2. Survey other disciplines. --When the need structure of biotechnology

has been identified, other scientific and technical fields should be studied.

The purpose of the study should be to reveal whether the other fields have

similar terminology problems and if they do not, as chemistry, for example,

does not seem to, determine what frameworks, structures, etc., have

promoted the consistent and stable nomenclature. A comparison of discipline

needs will result in identification of possible solutions that may be viable in

biotechnology.

The results of these two steps will be a firm basis for continued solution

of the problem. Particular outputs should include:

1. Characteristics of the terms and syntax. A terminological tool

should have to meet the needs of the discipline.

2. Identification of techniques for promoting acceptance of a

terminological tool.

3. A set of candidate approaches which can be ordered in terms

of the need satisfaction potential identified in 1 and 2 above.

Performance of the above steps will not solve the whole issue, but will result

in data from which the steps necessary for completion can be derived and

detailed.

Serendipity Associates

Chatsworth, California, October, 1966
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